首页> 外文期刊>Communications in Statistics >Bayesian estimation of time-varying parameters in ordinary differential equation models with noisy time- varying covariates
【24h】

Bayesian estimation of time-varying parameters in ordinary differential equation models with noisy time- varying covariates

机译:嘈杂时差调节器常用方程模型中时变参数的贝叶斯估计

获取原文
获取原文并翻译 | 示例

摘要

Ordinary differential equations (ODEs) are important mathematical models in applied sciences to describe dynamic processes. The parameters involved in the models usually have specific meanings, and hence need to be estimated from the observed data. In applications, the parameters may change with time, which are called time-varying parameters. In this paper, we propose a Bayesian penalized B-spline method to estimate the time-varying parameters and initial values in ODEs. Simulation studies show that this method is more efficient than the two-stage local polynomial method. Furthermore, we introduce the DIC model selection criterion to determine the number of knots of B-splines.
机译:普通微分方程(ODES)是应用科学中的重要数学模型,以描述动态过程。 模型中涉及的参数通常具有特定含义,因此需要从观察到的数据估计。 在应用中,参数可以随时间改变,它们称为时变参数。 在本文中,我们提出了贝叶斯惩罚的B样曲线方法来估计杂志中的时变参数和初始值。 仿真研究表明,该方法比两级局部多项式方法更有效。 此外,我们介绍了DIC模型选择标准以确定B样条的结的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号