首页> 外文期刊>Communications in Statistics >A modified self-updating clustering algorithm for application to dengue gene expression data
【24h】

A modified self-updating clustering algorithm for application to dengue gene expression data

机译:一种修改的自我更新群体应用于登革热基因表达数据

获取原文
获取原文并翻译 | 示例

摘要

This work proposed a conceptually simple and computationally straightforward clustering algorithm based on the Cauchy-type distance for data clustering. It was demonstrated that the proposed approach does not require the priori number of clusters and the convergence of the proposed algorithm was proved. The experiment results showed that the proposed clustering algorithm was superior to other compared algorithms. Computational complexity was also provided. A real dengue gene expression dataset was used to demonstrate the effectiveness of the proposed method.
机译:这项工作提出了一种基于Cauchy型距离的概念简单和计算直接的聚类算法,用于数据聚类。据证明,所提出的方法不需要先后的簇数,并证明了所提出的算法的收敛。实验结果表明,所提出的聚类算法优于其他比较算法。还提供了计算复杂性。使用真正的登革热基因表达数据集来证明所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号