首页> 外文期刊>Communications in Statistics >BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes
【24h】

BiMM tree: a decision tree method for modeling clustered and longitudinal binary outcomes

机译:BiMM树:一种决策树方法,用于建模聚类和纵向二进制结果

获取原文
获取原文并翻译 | 示例

摘要

Clustered binary outcomes are frequently encountered in clinical research (e.g. longitudinal studies). Generalized linear mixed models (GLMMs) for clustered endpoints have challenges for some scenarios (e.g. data with multi-way interactions and nonlinear predictors unknown a priori). We develop an alternative, data-driven method called Binary Mixed Model (BiMM) tree, which combines decision tree and GLMM within a unified framework. Simulation studies show that BiMM tree achieves slightly higher or similar accuracy compared to standard methods. The method is applied to a real dataset from the Acute Liver Failure Study Group.
机译:在临床研究(例如纵向研究)中经常遇到聚集的二元结果。群集端点的广义线性混合模型(GLMM)在某些情况下存在挑战(例如,具有多向交互作用的数据和先验未知的非线性预测变量)。我们开发了另一种称为二进制混合模型(BiMM)树的数据驱动方法,该方法在统一框架内结合了决策树和GLMM。仿真研究表明,与标准方法相比,BiMM树获得了更高或更高的准确性。该方法已应用于急性肝衰竭研究小组的真实数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号