首页> 外文期刊>Communications in Statistics >Efficient algorithms for robust estimation in autoregressive regression models using Student's f distribution
【24h】

Efficient algorithms for robust estimation in autoregressive regression models using Student's f distribution

机译:使用学生的f分布在自回归回归模型中进行鲁棒估计的高效算法

获取原文
获取原文并翻译 | 示例

摘要

It is now a common knowledge that most data that occur in practice violate the assumption of normality. The Student's t distribution is not only a handy alternative to such a case but also possesses a structure that makes estimation easy via numerical computation. This paper focuses on maximum-likelihood estimation of the parameters of autoregressive regression model driven by Student's t distribution. EM-type algorithms are utilized to iteratively obtain the maximum-likelihood estimates of the parameters of the model. The method's performance is compared with the method of modified maximum-likelihood estimation in simulations and real data analysis.
机译:现在众所周知,实践中出现的大多数数据违反了正常性的假设。学生t分布不仅是这种情况的方便替代方法,而且还具有通过数值计算使估算变得容易的结构。本文主要研究由学生t分布驱动的自回归模型参数的最大似然估计。 EM型算法用于迭代获得模型参数的最大似然估计。在仿真和真实数据分析中,将该方法的性能与改进的最大似然估计方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号