首页> 外文期刊>Communications in Statistics >Performance of standard imputation methods for missing quality of life data as covariate in survival analysis based on simulations from the International Breast Cancer Study Group Trials Ⅵ and Ⅶ
【24h】

Performance of standard imputation methods for missing quality of life data as covariate in survival analysis based on simulations from the International Breast Cancer Study Group Trials Ⅵ and Ⅶ

机译:根据国际乳腺癌研究小组试验Ⅵ和simulation的模拟,在生存分析中缺少作为生存变量协变量的标准插补方法的性能

获取原文
获取原文并翻译 | 示例

摘要

Imputation methods for missing data on a time-dependent variable within time-dependent Cox models are investigated in a simulation study. Quality of life (QoL) assessments were removed from the complete simulated datasets, which have a positive relationship between QoL and disease-free survival (DFS) and delayed chemotherapy and DFS, by missing at random and missing not at random (MNAR) mechanisms. Standard imputation methods were applied before analysis. Method performance was influenced by missing data mechanism, with one exception for simple imputation. The greatest bias occurred under MNAR and large effect sizes. It is important to carefully investigate the missing data mechanism.
机译:在模拟研究中研究了时间依赖的Cox模型中时间依赖变量的数据缺失的插补方法。从完整的模拟数据集中删除了生活质量(QoL)评估,通过随机丢失和非随机丢失(MNAR)机制,QoL与无病生存(DFS)和延迟化疗和DFS之间存在正相关关系。分析之前应用标准插补方法。方法的性能受到数据机制缺失的影响,其中一个例外是简单的插补。最大偏差发生在MNAR和较大效应大小下。仔细研究丢失的数据机制非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号