首页> 外文期刊>Communications in Statistics >Bayesian quantile regression and variable selection for partial linear single-index model: Using free knot spline
【24h】

Bayesian quantile regression and variable selection for partial linear single-index model: Using free knot spline

机译:部分线性单指标模型的贝叶斯分位数回归和变量选择:使用自由结样条

获取原文
获取原文并翻译 | 示例

摘要

Partial linear single-index model (PLSIM) has both the flexibility of nonparametric treatment and interpretability of linear term, yet existing literatures about it mainly focused on mean regression, and quantile regression analysis is scarce. Based on free knot spline approximation, we apply asymmetric Laplace distribution to implement Bayesian quantile regression, and perform variable selection in linear term and index vector via binary indicators. Our approach is exempt from regularity conditions in frequentist method, and could execute variable selection and quantile regression under mutual posterior correction, which is also the first work to implement them jointly for PLSIM in fully Bayesian framework. The numerical simulation manifests the superiority of our approach to previous methods, which embodied in better efficiency of variable selection, index vector estimates and link function approximation with different error distributions. For illustration of its application, we build a power consumption model of A(2)/O process in wastewater treatment and emphatically analyze the impact of water quality factors.
机译:偏线性单指标模型(PLSIM)具有非参数处理的灵活性和线性项的可解释性,但是有关它的现有文献主要集中在均值回归上,而分位数回归分析却很少。基于自由结样条近似,我们应用非对称拉普拉斯分布来实现贝叶斯分位数回归,并通过二元指标在线性项和索引向量中执行变量选择。我们的方法免除了频繁性方法中的规则性条件,并且可以在相互后验校正的情况下执行变量选择和分位数回归,这也是在完全贝叶斯框架下联合实现PLSIM的第一项工作。数值模拟表明我们的方法比以前的方法优越,这体现在变量选择,索引向量估计和具有不同误差分布的链接函数逼近的效率更高。为了说明其应用,我们建立了A(2)/ O工艺在废水处理中的功耗模型,并着重分析了水质因素的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号