首页> 外文期刊>Communications in Statistics. B, Simulation and Computation >Optimal Bounds Used in Dollar-Unit Sampling: A Comparison of Reliability and Efficiency
【24h】

Optimal Bounds Used in Dollar-Unit Sampling: A Comparison of Reliability and Efficiency

机译:美元单位抽样中使用的最佳界限:可靠性和效率的比较

获取原文
获取原文并翻译 | 示例

摘要

Auditors typically employ one-sided confidence bounds to estimate the total error in an audit population. This estimate provides an auditor with a given level of assurance that the total error does not exceed the upper confidence bound. This paper summarizes the results of an extensive simulation study using both real and simulated data comparing 14 bounds. No one method was found to be superior in terms of reliability and efficiency. A 95% upper bound is reliable if, when used repeatedly, the bound exceeds the true audit error 95% of the time. Efficiency measures the size of the bound; the smaller the bound is, the more efficient it is said to be. The multinomial-Dirichlet method [Tsui, K. W., Matsamura, E. M., Tsui, K. L. (1985). Multinomial-Dirichlet bounds for dollar-unit sampling in auditing. Acc. Rev. 60(1):76-96] demonstrated the best reliability for a variety of populations. The Bayesian normal bound [Menzefricke, U., Smieliauskas, W. (1984). A simulation study of the performance of parametric dollar unit sampling statistical procedures. J. Acc. Res. 22(2):588-604] and the Cox and Snell bound [Cox, D. R., Snell, E. J. (1979). On sampling and the estimation of rare errors. Biometrika 66(1): 125-132] are reliable and more efficient than the multinomial-Dirichlet bound for particular populations. The Augmented Variance Estimator bound [Rohrbach, K. J. (1993). Variance augmentation to achieve nominal coverage probability in sampling from audit populations. Auditing J. Practice Theory 12(2):79-97] is reliable and efficient for populations with error rates of less than 10%. The extended multinominal-Dirichlet bound [Matsumura, E., Tsui, K., Wong, W.K. (1990). An extended multinomial-Dirichlet model for error bounds for dollar-unit sampling. Contemporary Acc. Res. 6:485-500] is reliable and efficient for most of the real populations studied.
机译:审核员通常采用单方面的置信范围来估计审核总体中的总错误。该估计为审计师提供了一定的保证水平,即总误差不超过置信度上限。本文总结了使用14个边界的真实和模拟数据进行的广泛模拟研究的结果。在可靠性和效率方面,没有一种方法是优越的。如果重复使用上限时,95%的时间超过真实审计错误,则上限为95%是可靠的。效率衡量界限的大小;范围越小,据说效率越高。多项式-Dirichlet方法[Tsui,K. W.,Matsamura,E. M.,Tsui,K. L.(1985)。审计中美元单位抽样的多项式-狄利克雷界限。累积Rev. 60(1):76-96]证明了各种人群的最佳可靠性。贝叶斯法向界[Menzefricke,U.,Smieliauskas,W。(1984)。参数美元单位抽样统计程序性能的仿真研究。 J. Acc。 Res。 22(2):588-604]和Cox和Snell结合[Cox,D.R.,Snell,E.J。(1979)。关于采样和罕见错误的估计。 [Biometrika 66(1):125-132]比针对特定人群的多项式Dirichlet绑定更可靠,更高效。增强方差估计器约束[Rohrbach,K. J.(1993)。从审计总体中抽样时,方差增加以实现名义覆盖率。 Auditing J. Practice Theory 12(2):79-97]对于错误率小于10%的人群是可靠且有效的。扩展的多项式-狄里克雷界[Matsumura,E.,Tsui,K.,Wong,W.K. (1990)。一个扩展的多项式-狄利克雷模型,用于美元单位抽样的误差范围。当代艺术Res。 6:485-500]对于大多数研究的真实人群而言是可靠且高效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号