首页> 外文期刊>Communications in Statistics >Sparse Functional Principal Component Analysis via Regularized Basis Expansions and Its Application
【24h】

Sparse Functional Principal Component Analysis via Regularized Basis Expansions and Its Application

机译:正则化基础展开的稀疏功能主成分分析及其应用

获取原文
获取原文并翻译 | 示例

摘要

This article introduces principal component analysis for multidimensional sparse functional data, utilizing Gaussian basis functions. Our multidimensional model is estimated by maximizing a penalized log-likelihood function, while previous mixed-type models were estimated by maximum likelihood methods for one-dimensional data. The penalized estimation performs well for our multidimensional model, while maximum likelihood methods yield unstable parameter estimates and some of the parameter estimates are infinite. Numerical experiments are conducted to investigate the effectiveness of our method for some types of missing data. The proposed method is applied to handwriting data, which consist of the XY coordinates values in handwritings.
机译:本文介绍了利用高斯基函数对多维稀疏函数数据进行主成分分析的方法。我们的多维模型是通过最大化惩罚对数似然函数来估计的,而先前的混合类型模型是通过最大似然方法来估计一维数据的。惩罚估计对于我们的多维模型表现良好,而最大似然方法会产生不稳定的参数估计,而某些参数估计是无限的。进行数值实验以研究我们的方法对某些类型的缺失数据的有效性。所提出的方法应用于手写数据,该数据由手写中的XY坐标值组成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号