首页> 外文期刊>Communications in Statistics >A Note on Importance Resampling for Multi-Dimensional Statistics
【24h】

A Note on Importance Resampling for Multi-Dimensional Statistics

机译:有关多维统计重要性重采样的说明

获取原文
获取原文并翻译 | 示例

摘要

Johns (1988), Davison (1988), and Do and Hall (1991) used importance sampling for calculating bootstrap distributions of one-dimensional statistics. Realizing that their methods can not be extended easily to multi-dimensional statistics, Fuh and Hu (2004) proposed an exponential tilting formula for statistics of multi-dimension, which is optimal in the sense that the asymptotic variance is minimized for estimating tail probabilities of asymptotically normal statistics. For one-dimensional statistics, Hu and Su (2008) proposed a multi-step variance minimization approach that can be viewed as a generalization of the two-step variance minimization approach proposed by Do and Hall (1991). In this article, we generalize the approach of Hu and Su (2008) to multi-dimensional statistics, which applies to general statistics and does not resort to asymptotics. Empirical results on a real survival data set show that the proposed algorithm provides significant computational efficiency gains.
机译:Johns(1988),Davison(1988)和Do and Hall(1991)使用重要性抽样来计算一维统计量的自举分布。 Fuh和Hu(2004)认识到他们的方法不易扩展到多维统计,因此提出了一种用于多维统计的指数倾斜公式,该公式在将渐近方差最小化以估计尾部概率时是最优的。渐近正态统计。对于一维统计量,Hu和Su(2008)提出了一种多步方差最小化方法,该方法可以看作是Do和Hall(1991)提出的两步方差最小化方法的推广。在本文中,我们将Hu和Su(2008)的方法推广到多维统计,该方法适用于常规统计,而没有求助于渐近。在真实生存数据集上的经验结果表明,该算法可显着提高计算效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号