首页> 外文期刊>Communications in Statistics >Gene Pathways Discovery in Asbestos-Related Diseases using Local Causal Discovery Algorithm
【24h】

Gene Pathways Discovery in Asbestos-Related Diseases using Local Causal Discovery Algorithm

机译:使用局部因果发现算法发现石棉相关疾病的基因途径

获取原文
获取原文并翻译 | 示例

摘要

To learn about the progression of a complex disease, it is necessary to understand the physiology and function of many genes operating together in distinct interactions as a system. In order to significantly advance our understanding of the function of a system, we need to learn the causal relationships among its modeled genes. To this end, it is desirable to compare experiments of the system under complete interventions of some genes, e.g., knock-out of some genes, with experiments of the system without interventions. However, it is expensive and difficult (if not impossible) to conduct wet lab experiments of complete interventions of genes in animal models, e.g., a mouse model. Thus, it will be helpful if we can discover promising causal relationships among genes with observational data alone in order to identify promising genes to perturb in the system that can later be verified in wet laboratories. While causal Bayesian networks have been actively used in discovering gene pathways, most of the algorithms that discover pairwise causal relationships from observational data alone identify only a small number of significant pairwise causal relationships, even with a large dataset. In this article, we introduce new causal discovery algorithms—the Equivalence Local Implicit latent variable scoring Method (EquLIM) and EquLIM with Markov chain Monte Carlo search algorithm (EquLIM-MCMC)—that identify promising causal relationships even with a small observational dataset.
机译:要了解复杂疾病的进展,有必要了解许多在系统中以独特相互作用相互作用的基因的生理学和功能。为了大大提高我们对系统功能的理解,我们需要学习其建模基因之间的因果关系。为此,希望将在某些基因的完全干预下(例如敲除某些基因)的系统实验与在没有干预的情况下进行的系统实验进行比较。但是,对动物模型例如小鼠模型中的基因进行完全干预的湿实验室实验是昂贵且困难的(如果不是不可能的话)。因此,如果我们仅凭观测数据就能发现基因之间有希望的因果关系,以识别出可能干扰系统的有希望的基因,这将在以后的湿实验室中进行验证,那将是有帮助的。尽管因果贝叶斯网络已被积极地用于发现基因途径,但是大多数仅从观测数据中发现成对因果关系的算法即使对于大型数据集也只能识别出少量的重要成对因果关系。在本文中,我们介绍了新的因果发现算法-等价局部隐式潜在变量评分方法(EquLIM)和具有马尔可夫链蒙特卡洛搜索算法(EquLIM-MCMC)的EquLIM-即使使用较小的观测数据集,也可以确定有希望的因果关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号