首页> 外文期刊>Communications in Statistics >Weighted Support Vector Machine Using k-Means Clustering
【24h】

Weighted Support Vector Machine Using k-Means Clustering

机译:使用k均值聚类的加权支持向量机

获取原文
获取原文并翻译 | 示例

摘要

The support vector machine (SVM) has been successfully applied to various classification areas with great flexibility and a high level of classification accuracy. However, the SVM is not suitable for the classification of large or imbalanced datasets because of significant computational problems and a classification bias toward the dominant class. The SVM combined with the k-means clustering (KM-SVM) is a fast algorithm developed to accelerate both the training and the prediction of SVM classifiers by using the cluster centers obtained from the k-means clustering. In the KM-SVM algorithm, however, the penalty of misclassification is treated equally for each cluster center even though the contributions of different cluster centers to the classification can be different. In order to improve classification accuracy, we propose the WKM-SVM algorithm which imposes different penalties for the misclassification of cluster centers by using the number of data points within each cluster as a weight. As an extension of the WKM-SVM, the recovery process based on WKM-SVM is suggested to incorporate the information near the optimal boundary. Furthermore, the proposed WKM-SVM can be successfully applied to imbalanced datasets with an appropriate weighting strategy. Experiments show the effectiveness of our proposed methods.
机译:支持向量机(SVM)已成功应用于各种分类领域,具有很大的灵活性和很高的分类精度。但是,SVM不适合用于大型或不平衡数据集的分类,因为存在重大的计算问题,并且对主要类别的分类存在偏见。支持向量机与k均值聚类(KM-SVM)相结合是一种快速算法,通过使用从k均值聚类获得的聚类中心来加快SVM分类器的训练和预测。但是,在KM-SVM算法中,即使不同聚类中心对分类的贡献可能不同,也对每个聚类中心同等对待误分类的损失。为了提高分类的准确性,我们提出了WKM-SVM算法,该算法通过将每个聚类中的数据点数量作为权重,对聚类中心的误分类施加不同的惩罚。作为WKM-SVM的扩展,建议基于WKM-SVM的恢复过程将信息合并到最佳边界附近。此外,所提出的WKM-SVM可以通过适当的加权策略成功地应用于不平衡数据集。实验证明了我们提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号