首页> 外文期刊>Communications in Statistics >The Integration of Artificial Neural Networks and Text Mining to Forecast Gold Futures Prices
【24h】

The Integration of Artificial Neural Networks and Text Mining to Forecast Gold Futures Prices

机译:人工神经网络和文本挖掘的集成来预测黄金期货价格

获取原文
获取原文并翻译 | 示例

摘要

Although a previous study found that neural network forecasts were more accurate than time series models for predicting Latin American stock indexes, the forecasting accuracy of neural network for predicting gold futures prices has never been discussed. Therefore, the first objective of this study is to compare the forecasting accuracy of a neural network model with that of ARIMA models. Furthermore, the fluctuations in gold futures are not only influenced by the quantitative variables, but also by many nonquantifiable factors, such as wars, international relations, and terrorist attacks. The second objective of this study is therefore to propose the integration of text mining and an artificial neural network to forecast gold futures prices. The historical gold futures prices from 1999 to 2008 were used as training data and testing data, and the prices of 2009 were used to examine the effectiveness of the proposed model. The results of empirical analysis showed that an artificial neural network forecasted gold futures prices better than ARIMA models did. In addition, text mining provided a reasonable explanation of the trend in gold futures prices.
机译:尽管先前的研究发现神经网络预测比预测拉丁美洲股票指数的时间序列模型更准确,但从未讨论过神经网络预测黄金期货价格的预测准确性。因此,本研究的首要目标是比较神经网络模型和ARIMA模型的预测准确性。此外,黄金期货的波动不仅受到定量变量的影响,而且还受到许多不可量化的因素的影响,例如战争,国际关系和恐怖袭击。因此,本研究的第二个目标是提出文本挖掘和人工神经网络的集成来预测黄金期货价格。从1999年到2008年的历史黄金期货价格被用作训练数据和测试数据,而2009年的价格被用来检验该模型的有效性。实证分析结果表明,人工神经网络对黄金期货价格的预测优于ARIMA模型。此外,文本挖掘为黄金期货价格的趋势提供了合理的解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号