首页> 外文期刊>Communications in Statistics >Robust Coordinate Descent Algorithm Robust Solution Path for High-dimensional Sparse Regression Modeling
【24h】

Robust Coordinate Descent Algorithm Robust Solution Path for High-dimensional Sparse Regression Modeling

机译:高维稀疏回归建模的鲁棒坐标下降算法鲁棒求解路径

获取原文
获取原文并翻译 | 示例

摘要

The L-1-type regularization provides a useful tool for variable selection in high-dimensional regression modeling. Various algorithms have been proposed to solve optimization problems for L-1-type regularization. Especially the coordinate descent algorithm has been shown to be effective in sparse regression modeling. Although the algorithm shows a remarkable performance to solve optimization problems for L-1-type regularization, it suffers from outliers, since the procedure is based on the inner product of predictor variables and partial residuals obtained from a non-robust manner. To overcome this drawback, we propose a robust coordinate descent algorithm, especially focusing on the high-dimensional regression modeling based on the principal components space. We show that the proposed robust algorithm converges to the minimum value of its objective function. Monte Carlo experiments and real data analysis are conducted to examine the efficiency of the proposed robust algorithm. We observe that our robust coordinate descent algorithm effectively performs for the high-dimensional regression modeling even in the presence of outliers.
机译:L-1型正则化为高维回归建模中的变量选择提供了有用的工具。已经提出了各种算法来解决用于L-1-型正则化的优化问题。特别是坐标下降算法已被证明在稀疏回归建模中是有效的。尽管该算法在解决L-1型正则化优化问题方面显示出显着的性能,但它存在异常值,因为该过程基于预测变量的内积和通过非稳健方式获得的部分残差。为了克服这个缺点,我们提出了一种鲁棒的坐标下降算法,特别是基于主成分空间的高维回归建模。我们表明,提出的鲁棒算法收敛到其目标函数的最小值。进行了蒙特卡罗实验和真实数据分析,以检验所提出的鲁棒算法的效率。我们观察到,即使存在异常值,我们的鲁棒坐标下降算法也可以有效地执行高维回归建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号