首页> 外文期刊>Communications in Statistics >A simulation based method for assessing the statistical significance of logistic regression models after common variable selection procedures
【24h】

A simulation based method for assessing the statistical significance of logistic regression models after common variable selection procedures

机译:评估公共变量选择程序后逻辑回归模型的统计显着性的基于仿真的方法

获取原文
获取原文并翻译 | 示例

摘要

Classification models can demonstrate apparent prediction accuracy even when there is no underlying relationship between the predictors and the response. Variable selection procedures can lead to false positive variable selections and overestimation of true model performance. A simulation study was conducted using logistic regression with forward stepwise, best subsets, and LASSO variable selection methods with varying total sample sizes (20, 50, 100, 200) and numbers of random noise predictor variables (3, 5, 10, 15, 20, 50). Using our critical values can help reduce needless follow-up on variables having no true association with the outcome.
机译:即使预测变量和响应之间没有潜在的关系,分类模型也可以证明明显的预测准确性。变量选择过程可能导致错误的正变量选择和对实际模型性能的高估。使用对数逐步回归,最佳子集和LASSO变量选择方法进行逻辑回归进行模拟研究,该方法具有不同的总样本量(20、50、100、200)和随机噪声预测变量的数量(3、5、10、15, 20、50)。使用我们的临界值可以帮助减少对与结果没有真正关联的变量进行不必要的跟进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号