首页> 外文期刊>Communications in Statistics >Inference based on progressive Type I interval censored data from log-normal distribution
【24h】

Inference based on progressive Type I interval censored data from log-normal distribution

机译:基于对数正态分布的基于渐进I型间隔审查数据的推断

获取原文
获取原文并翻译 | 示例

摘要

This article considers inference for the log-normal distribution based on progressive Type I interval censored data by both frequentist and Bayesian methods. First, the maximum likelihood estimates (MLEs) of the unknown model parameters are computed by expectation-maximization (EM) algorithm. The asymptotic standard errors (ASEs) of the MLEs are obtained by applying the missing information principle. Next, the Bayes' estimates of the model parameters are obtained by Gibbs sampling method under both symmetric and asymmetric loss functions. The Gibbs sampling scheme is facilitated by adopting a similar data augmentation scheme as in EM algorithm. The performance of the MLEs and various Bayesian point estimates is judged via a simulation study. A real dataset is analyzed for the purpose of illustration.
机译:本文考虑了基于频数和贝叶斯方法的基于渐进I类区间删失数据的对数正态分布推断。首先,通过期望最大化(EM)算法计算未知模型参数的最大似然估计(MLE)。 MLE的渐近标准误(ASE)通过应用缺失信息原理获得。接下来,在对称和非对称损失函数下,通过吉布斯采样方法获得模型参数的贝叶斯估计。通过采用与EM算法中类似的数据增强方案,可以简化Gibbs采样方案。 MLE的性能和各种贝叶斯点估计是通过模拟研究来判断的。为了说明的目的,分析了真实的数据集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号