首页> 外文期刊>Communications in Statistics >An efficient Bayesian approach for Gaussian Bayesian network structure learning
【24h】

An efficient Bayesian approach for Gaussian Bayesian network structure learning

机译:高斯贝叶斯网络结构学习的有效贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

This article proposes a Bayesian computing algorithm to infer Gaussian directed acyclic graphs (DAGs). It has the ability of escaping local modes and maintaining adequate computing speed compared to existing methods. Simulations demonstrated that the proposed algorithm has low false positives and false negatives in comparison to an algorithm applied to DAGs. We applied the algorithm to an epigenetic dataset to infer DAG's for smokers and nonsmokers.
机译:本文提出了一种贝叶斯计算算法来推断高斯有向无环图(DAG)。与现有方法相比,它具有逃避本地模式并保持足够的计算速度的能力。仿真表明,与应用于DAG的算法相比,该算法具有较低的误报率和误报率。我们将该算法应用于表观遗传数据集,以推断吸烟者和非吸烟者的DAG。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号