首页> 外文期刊>Communications in Statistics >Clustered data with small sample sizes: Comparing the performance of model-based and design-based approaches
【24h】

Clustered data with small sample sizes: Comparing the performance of model-based and design-based approaches

机译:具有小样本量的聚类数据:比较基于模型和基于设计的方法的性能

获取原文
获取原文并翻译 | 示例

摘要

Two classes of methods properly account for clustering of data: design-based methods and model-based methods. Estimates from both methods have been shown to be approximately equal with large samples. However, both classes are known to produce biased standard error estimates with small samples. This paper compares the bias of standard errors and statistical power of marginal effects for generalized estimating equations (a design-based method) and generalized/linear mixed effects models (model-based methods) with small sample sizes via a simulation study. Provided that the distributional assumptions are met, model-based methods produced the least-biased standard error estimates and greater relative statistical power.
机译:两类方法正确地说明了数据的聚类:基于设计的方法和基于模型的方法。两种方法的估计值已被证明与大样本近似相等。但是,已知这两个类都会产生带有少量样本的有偏标准误差估计。本文通过模拟研究比较了样本量较小的广义估计方程(基于设计的方法)和广义/线性混合效应模型(基于模型的方法)的标准误差偏差和边际效应的统计功效。在满足分布假设的前提下,基于模型的方法产生的偏差最小,标准误差估计值更大,相对统计能力更大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号