首页> 外文期刊>Communications in Statistics >Bootstrap estimation and model selection for multivariate normal mixtures using parallel computing with graphics processing units
【24h】

Bootstrap estimation and model selection for multivariate normal mixtures using parallel computing with graphics processing units

机译:使用带有图形处理单元的并行计算,对多元正常混合物的自举估计和模型选择

获取原文
获取原文并翻译 | 示例

摘要

In applications of multivariate finite mixture models, estimating the number of unknown components is often difficult. We propose a bootstrap information criterion, whereby we calculate the expected log-likelihood at maximum a posteriori estimates for model selection. Accurate estimation using the bootstrap requires a large number of bootstrap replicates. We accelerate this computation by employing parallel processing with graphics processing units (GPUs) on the Compute Unified Device Architecture (CUDA) platform. We conducted a runtime comparison of CUDA algorithms between implementation on the GPU and that on a CPU. The results showed significant performance gains in the proposed CUDA algorithms over multithread CPUs.
机译:在多元有限混合模型的应用中,估计未知组分的数量通常很困难。我们提出了一个自举信息准则,据此我们可以在模型选择的最大后验估计中计算预期的对数似然性。使用引导程序进行准确估计需要大量的引导程序重复。我们通过在Compute Unified Device Architecture(CUDA)平台上对图形处理单元(GPU)进行并行处理来加快计算速度。我们对GPU和CPU上的CUDA算法进行了运行时比较。结果表明,所提出的CUDA算法在多线程CPU上具有显着的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号