首页> 外文期刊>Communications in Statistics >Robust estimation of a multilevel model with structural change
【24h】

Robust estimation of a multilevel model with structural change

机译:具有结构变化的多层次模型的鲁棒估计

获取原文
获取原文并翻译 | 示例

摘要

We postulate a spatiotemporal multilevel model and estimate using forward search algorithm and MLE imbedded into the backfitting algorithm. Forward search algorithm ensures robustness of the estimates by filtering the effect of temporary structural changes in the estimation of the group-level covariates, the individual-level covariates and spatial parameters. Backfitting algorithm provides computational efficiency of estimation procedure assuming an additive model. Simulation studies show that estimates are robust even in the presence of structural changes induced for example by epidemic outbreak. The model also produced robust estimates even for small sample and short time series common in epidemiological settings.
机译:我们假设一个时空多级模型,并使用正向搜索算法和嵌入反拟合算法的MLE进行估计。前向搜索算法通过在组级别协变量,个体级别协变量和空间参数的估计中过滤临时结构变化的影响来确保估计的鲁棒性。反演算法提供了假设加性模型的估计过程的计算效率。模拟研究表明,即使存在由流行病引起的结构变化,估计值也是可靠的。该模型甚至对流行病学环境中常见的小样本和短时间序列也产生了可靠的估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号