首页> 外文期刊>Communications in Statistics >Variable selection in linear regression analysis with alternative Bayesian information criteria using differential evaluation algorithm
【24h】

Variable selection in linear regression analysis with alternative Bayesian information criteria using differential evaluation algorithm

机译:使用差分评估算法的具有替代贝叶斯信息准则的线性回归分析中的变量选择

获取原文
获取原文并翻译 | 示例

摘要

In statistical analysis, one of the most important subjects is to select relevant exploratory variables that perfectly explain the dependent variable. Variable selection methods are usually performed within regression analysis. Variable selection is implemented so as to minimize the information criteria (IC) in regression models. Information criteria directly affect the power of prediction and the estimation of selected models. There are numerous information criteria in literature such as Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC). These criteria are modified for to improve the performance of the selected models. BIC is extended with alternative modifications towards the usage of prior and information matrix. Information matrix-based BIC (IBIC) and scaled unit information prior BIC (SPBIC) are efficient criteria for this modification. In this article, we proposed a combination to perform variable selection via differential evolution (DE) algorithm for minimizing IBIC and SPBIC in linear regression analysis. We concluded that these alternative criteria are very useful for variable selection. We also illustrated the efficiency of this combination with various simulation and application studies.
机译:在统计分析中,最重要的主题之一是选择能完美解释因变量的相关探索性变量。变量选择方法通常在回归分析中执行。实现变量选择以使回归模型中的信息标准(IC)最小化。信息标准直接影响所选模型的预测和估计能力。文献中有许多信息标准,例如赤池信息标准(AIC)和贝叶斯信息标准(BIC)。修改这些标准是为了提高所选模型的性能。 BIC扩展了对先验和信息矩阵的使用的替代性修改。基于信息矩阵的BIC(IBIC)和按比例缩放的单位信息先于BIC(SPBIC)是此修改的有效标准。在本文中,我们提出了一种组合,通过微分进化(DE)算法执行变量选择,以最小化线性回归分析中的IBIC和SPBIC。我们得出结论,这些替代标准对于变量选择非常有用。我们还通过各种仿真和应用研究说明了这种组合的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号