首页> 外文期刊>International journal for numerical methods in biomedical engineering >A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction
【24h】

A poroelastic immersed finite element framework for modelling cardiac perfusion and fluid-structure interaction

机译:一种络弹性浸入的有限元框架,用于建模心脏灌注和流体结构相互作用

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Modern approaches to modelling cardiac perfusion now commonly describe the myocardium using the framework of poroelasticity. Cardiac tissue can be described as a saturated porous medium composed of the pore fluid (blood) and the skeleton (myocytes and collagen scaffold). In previous studies fluid-structure interaction in the heart has been treated in a variety of ways, but in most cases, the myocardium is assumed to be a hyperelastic fibre-reinforced material. Conversely, models that treat the myocardium as a poroelastic material typically neglect interactions between the myocardium and intracardiac blood flow. This work presents a poroelastic immersed finite element framework to model left ventricular dynamics in a three-phase poroelastic system composed of the pore blood fluid, the skeleton, and the chamber fluid. We benchmark our approach by examining a pair of prototypical poroelastic formations using a simple cubic geometry considered in the prior work by Chapelle et al (2010). This cubic model also enables us to compare the differences between system behaviour when using isotropic and anisotropic material models for the skeleton. With this framework, we also simulate the poroelastic dynamics of a three-dimensional left ventricle, in which the myocardium is described by the Holzapfel-Ogden law. Results obtained using the poroelastic model are compared to those of a corresponding hyperelastic model studied previously. We find that the poroelastic LV behaves differently from the hyperelastic LV model. For example, accounting for perfusion results in a smaller diastolic chamber volume, agreeing well with the well-known wall-stiffening effect under perfusion reported previously. Meanwhile differences in systolic function, such as fibre strain in the basal and middle ventricle, are found to be comparatively minor.
机译:现代旨在模拟心脏灌注的方法现在通常使用孔弹性框架描述心肌。心脏组织可以描述为由孔隙液(血液)和骨架(肌细胞和胶原块)构成的饱和多孔介质。在先前的研究中,心脏中的流体结构相互作用以各种方式治疗,但在大多数情况下,假设心肌是一种超塑料纤维增强材料。相反,将心肌植物视为多孔弹性材料的模型通常忽视心肌和心内血流之间的相互作用。这项工作呈现出一个多孔弹性浸入的有限元框架,以在由孔隙血液,骨架和室内流体组成的三相孔弹性系统中模拟左心室动力学。我们通过Chapelle等(2010)在先前工作中考虑的简单立方体几何形状来检查一对原型孔弹性地层来基准。该立方模型还使我们能够在使用各向同性和骨骼的各向异性材料模型时比较系统行为之间的差异。通过这一框架,我们还模拟了三维左心室的多孔弹性动力学,其中霍扎普福尔 - 奥格登法律描述了心肌。将使用孔弹性模型获得的结果与先前研究的相应超弹性模型的结果进行比较。我们发现孔隙弹性LV与高速LV模型不同。例如,灌注核算导致较小的舒张室容积,同意符合先前灌注下的众所周知的壁加强效果。同时发现基础和中脑室中的纤维菌株如纤维菌株的差异相对较小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号