首页> 外文期刊>International journal for numerical methods in biomedical engineering >Fluid-structure interaction simulations of venous valves: A monolithic ALE method for large structural displacements
【24h】

Fluid-structure interaction simulations of venous valves: A monolithic ALE method for large structural displacements

机译:静脉瓣膜的流体-结构相互作用模拟:大结构位移的整体式ALE方法

获取原文
获取原文并翻译 | 示例
           

摘要

Venous valves are bicuspidal valves that ensure that blood in veins only flows back to the heart. To prevent retrograde blood flow, the two intraluminal leaflets meet in the center of the vein and occlude the vessel. In fluid-structure interaction (FSI) simulations of venous valves, the large structural displacements may lead to mesh deteriorations and entanglements, causing instabilities of the solver and, consequently, the numerical solution to diverge. In this paper, we propose an arbitrary Lagrangian-Eulerian (ALE) scheme for FSI simulations designed to solve these instabilities. A monolithic formulation for the FSI problem is considered, and due to the complexity of the operators, the exact Jacobian matrix is evaluated using automatic differentiation. The method relies on the introduction of a staggered in time velocity to improve stability, and on fictitious springs to model the contact force of the valve leaflets. Because the large structural displacements may compromise the quality of the fluid mesh as well, a smoother fluid displacement, obtained with the introduction of a scaling factor that measures the distance of a fluid element from the valve leaflet tip, guarantees that there are no mesh entanglements in the fluid domain. To further improve stability, a streamline upwind Petrov-Galerkin (SUPG) method is employed. The proposed ALE scheme is applied to a two-dimensional (2D) model of a venous valve. The presented simulations show that the proposed method deals well with the large structural displacements of the problem, allowing a reconstruction of the valve behavior in both the opening and closing phase.
机译:静脉瓣膜是双尖瓣膜,可确保静脉中的血液仅流回心脏。为防止逆行血流,两个腔内小叶在静脉中心汇合并阻塞血管。在静脉瓣膜的流体-结构相互作用(FSI)模拟中,较大的结构位移可能导致网格退化和缠结,从而导致求解器不稳定,并因此导致数值解发散。在本文中,我们为FSI仿真提出了一种任意的Lagrangian-Eulerian(ALE)方案,旨在解决这些不稳定性。考虑了用于FSI问题的整体公式,并且由于运算符的复杂性,使用自动微分来评估确切的Jacobian矩阵。该方法依靠引入时间上的交错速度来提高稳定性,并依靠虚拟弹簧来模拟瓣膜小叶的接触力。由于较大的结构位移也可能会损害流体网格的质量,因此通过引入比例因子来测量更平滑的流体位移,该比例因子可测量流体元素到瓣膜小叶尖端的距离,从而确保没有网格纠缠在流体领域。为了进一步提高稳定性,采用了顺风的Petrov-Galerkin(SUPG)方法。拟议的ALE方案应用于静脉瓣膜的二维(2D)模型。仿真结果表明,所提出的方法很好地解决了该问题的大结构位移,从而可以在打开和关闭阶段都重建阀门性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号