首页> 外文会议>ASME Fluids Engineering Division Meeting >ADAPTIVE FINITE ELEMENTS SIMULATION METHODS AND APPLICATIONS FOR MONOLITHIC FLUID-STRUCTURE INTERACTION (FSI) PROBLEM
【24h】

ADAPTIVE FINITE ELEMENTS SIMULATION METHODS AND APPLICATIONS FOR MONOLITHIC FLUID-STRUCTURE INTERACTION (FSI) PROBLEM

机译:自适应有限元模拟方法和应用,用于单片流体结构相互作用(FSI)问题

获取原文

摘要

Will an aircraft wing have the structural integrity to with-stand the forces or fail when it's racing at a full speed? Fluid-structure interaction (FSI) analysis can help you to answer this question without the need to create costly prototypes. However, combining fluid dynamics with structural analysis traditionally poses a formidable challenge for even the most advanced numerical techniques due to the disconnected, domain-specific nature of analysis tools. In this paper, we present the state-of-the-art in computational FSI methods and techniques that go beyond the fundamentals of computational fluid and solid mechanics. In fact, the fundamental rule require transferring results from the computational fluid dynamics (CFD) analysis as input into the structural analysis and thus can be time-consuming, tedious and error-prone. This work consists of the investigation of different time stepping scheme formulations for a nonlinear fluid-structure interaction problem coupling the incompressible Navier-Stokes equations with a hyperelastic solid based on the well established Arbitrary Lagrangian Eulerian (ALE) framework. Temporal discretization is based on finite differences and a formulation as one step-θ scheme, from which we can extract the implicit euler, crank-nicolson, shifted crank-nicolson and the fractional-step-θ schemes. The ALE approach provides a simple, but powerful procedure to couple fluid flows with solid deformations by a monolithic solution algorithm. In such a setting, the fluid equations are transformed to a fixed reference configuration via the ALE mapping. The goal of this work is the development of concepts for the efficient numerical solution of FSI problem and the analysis of various fluid-mesh motion techniques, a comparison of different second-order time-stepping schemes. The time discretization is based on finite difference schemes whereas the spatial discretization is done with a Galerkin finite element scheme. The nonlinear problem is solved with Newton's method. To control computational costs, we apply a simplified version of a posteriori error estimation using the dual weighted residual (DWR) method. This method is used for the mesh adaption during the computation. The implementation using the software library package DOPELIB and deal. II serves for the computation of different fluid-structure configurations.
机译:将飞机机翼有结构的完整性与机架的部队或失败时,它的赛车以全速?流固耦合(FSI)分析可以帮助你回答这个问题,而无需创建昂贵的原型。然而,流体动力学与结构分析相结合的传统造成了因分析工具断开的,特定领域的性质,即使是最先进的数字技术,一项艰巨的挑战。在本文中,我们将介绍国家的最先进的超越计算流体力学和固体力学的基本原理计算FSI方法和技术。实际上,基本规则需要来自计算流体动力学(CFD)分析作为输入到结构分析结果传送并因此可以是耗时的,繁琐的且容易出错的。这个工作是由不同的时间步方案的制剂的一类非线性流体 - 结构交互问题耦合所述不可压缩Navier-Stokes方程基于所述很好地建立任意拉格朗日欧拉(ALE)框架超弹性固体的调查。时间离散是基于有限差分和的制剂作为一个步骤-θ方案中,从中可以提取隐含欧拉,曲柄 - 尼科尔森,偏移曲柄 - 尼科尔森和分数步骤-θ方案。在ALE的方法提供了一种简单但强大的程序耦合流体与由单片溶液算法固体变形流动。在这样的设置中,流体方程变换经由ALE映射一个固定的参考结构。这个工作的目的是概念对FSI问题的有效的数值溶液和各种流体网格运动技术分析,不同的第二次时步方案的比较的发展。而空间离散与Galerkin有限元方法进行的时间离散是基于有限差分方案。非线性问题的解决,是牛顿法。为了控制的计算成本,我们应用使用双加权残差(DWR)方法的后验误差估计的简化版本。这种方法被用于计算期间网格适配。使用该软件库包DOPELIB和协议的执行情况。 II服务于不同流体 - 结构配置的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号