首页> 外文期刊>Communications in numerical methods in engineering >A MLPG(LBIE) numerical method for solving 2D incompressible and nearly incompressible elastostatic problems
【24h】

A MLPG(LBIE) numerical method for solving 2D incompressible and nearly incompressible elastostatic problems

机译:求解二维不可压缩和几乎不可压缩的弹性静力学问题的MLPG(LBIE)数值方法

获取原文
获取原文并翻译 | 示例

摘要

A new meshless local Petrov-Galerkin (MLPG) method, based on local boundary integral equation (LBIE) considerations, is proposed here for the solution of 2D, incompressible and nearly incompressible elastostatic problems. The method utilizes, for its meshless implementation, nodal points spread over the analysed domain and employs the moving least squares (MLS) approximation for the interpolation of the interior and boundary variables. On the local and global boundaries, traction vectors are treated in a way so that no derivatives of the utilized MLS shape functions are required. Both displacement and hydrostatic pressure, at all the considered nodal points, are evaluated with the aid of local integral representations valid for incompressible and nearly incompressible solids. Since displacements and stresses are treated as independed variables, the boundary conditions are imposed directly without any problem via the integrals defined on the global boundary of the analysed body. Singular and hypersingular integrals are evaluated directly with high accuracy through advanced integration techniques. Three numerical examples illustrate the proposed methodology and demonstrates its accuracy.
机译:在此,基于局部边界积分方程(LBIE),提出了一种新的无网格局部Petrov-Galerkin(MLPG)方法,用于求解二维,不可压缩和几乎不可压缩的弹性静力学问题。对于其无网格实现,该方法利用了遍布分析区域的节点,并采用了移动最小二乘(MLS)近似来对内部变量和边界变量进行插值。在局部和全局边界上,以某种方式处理牵引矢量,因此不需要使用的MLS形状函数的导数。在所有考虑的节点上,均采用局部积分表示法评估位移和静水压力,这些局部积分表示法对不可压缩和几乎不可压缩的固体有效。由于位移和应力被视为独立变量,因此通过在被分析物体的整体边界上定义的积分,可以直接施加边界条件而没有任何问题。通过高级积分技术,可以直接高精度地评估奇异积分和超奇异积分。三个数值示例说明了所提出的方法并证明了其准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号