首页> 外文期刊>Communications in Numerical Methods in Engineering >High-order finite difference schemes for the solution of the generalized Burgers-Fisher equation
【24h】

High-order finite difference schemes for the solution of the generalized Burgers-Fisher equation

机译:广义Burgers-Fisher方程解的高阶有限差分格式

获取原文
获取原文并翻译 | 示例

摘要

Up to tenth-order finite difference (FD) schemes are proposed in this paper to solve the generalized Burgers-Fisher equation. The schemes based on high-order differences are presented using Taylor series expansion. To obtain the solutions, up to tenth-order FD schemes in space and fourth-order Runge-Kutta scheme in time have been combined. Numerical experiments have been conducted to demonstrate the efficiency and high-order accuracy of the present methods. The produced results are also seen to be more accurate than some available results given in the literature. Comparisons showed that there is very good agreement between the numerical solutions and the exact solutions in terms of accuracy. The present methods are seen to be very good alternatives to some existing techniques for such realistic problems.
机译:为了解决广义的Burgers-Fisher方程,本文提出了高达十阶的有限差分(FD)格式。使用泰勒级数展开给出了基于高阶差分的方案。为了获得解,将时间上的多达十阶FD方案和及时的四阶Runge-Kutta方案进行了组合。已经进行了数值实验以证明本方法的效率和高阶精度。所产生的结果也被认为比文献中给出的一些可用结果更为准确。比较表明,在精度方面,数值解和精确解之间有很好的一致性。对于这种现实问题,目前的方法被认为是对某些现有技术的很好替代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号