首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >An accurate and shock-stable genuinely multidimensional scheme for solving the Euler equations
【24h】

An accurate and shock-stable genuinely multidimensional scheme for solving the Euler equations

机译:用于解决欧拉方程的准确和冲击稳定的真正多维方案

获取原文
获取原文并翻译 | 示例

摘要

In numerical simulations of multidimensional high Mach flows, the conventional low diffusion upwind schemes built on the dimensional splitting method will encounter the shock instability which is mainly manifested as the infamous carbuncle phenomena. A linear stability analysis reveals that the shock instability is triggered by the unattenuated perturbations in the transverse direction of the flow field. In the present work, an accurate and shock-stable genuinely multidimensional numerical scheme based on the ToroV & aacute;zquez splitting method is presented. Different from the conventional one-dimensional upwind schemes that just consider the waves propagating along the direction normal to an interface, the proposed multidimensional scheme whose multidimensional properties are achieved by calculating multidimensional numerical fluxes at each corner of an interface also takes into account the waves traveling along the transverse direction. For obtaining these multidimensional numerical fluxes at the corner, a simple multidimensional upwind method is used to solve the weakly hyperbolic convection subsystem and the pressure subsystem whose flux Jacobian has a complete set of linearly independent eigenvectors is calculated by a multidimensional HLLEM scheme. Based on Balsara & rsquo;s framework for constructing multidimensional schemes, the total numerical flux across an interface is obtained by using the Simpson & rsquo;s rule to assemble the conventional one-dimensional numerical flux with the multidimensional numerical fluxes at the corner. A series of benchmark test problems validate the accuracy, robustness and efficiency of the proposed multidimensional scheme.(c) 2021 Elsevier B.V. All rights reserved.
机译:在多维高马氏流动的数值模拟中,在尺寸分裂方法上构建的传统低扩散UPWIND方案将遇到震荡不稳定,主要表现为臭臭碳水植物现象。线性稳定性分析表明,通过在流场的横向方向上的未滞后的扰动触发冲击不稳定性。在本作工作中,基于TOROV和AACUTE的精确和冲击稳定的真正多维数值方案; ZQuez分裂方法提出。与传统的一维上冲程方案不同,即仅考虑沿着界面的方向传播的波的波浪,所提出的多维特性通过计算接口每个角落的多维数值通量来实现的多维特性,也考虑了波浪行驶沿横向方向。为了获得拐角处的这些多维数值通量,使用简单的多维upwind方法来解决弱双向对流子系统和磁通曲线具有完整的线性独立特征向量的压力子系统是通过多维Hllem方案计算的。基于Balsara&Rsquo; S框架用于构建多维方案,通过使用SIMPSON&RSQUO的界面进行界面的总数数量磁通量来获得与拐角处的多维数值通量组装传统的一维数值通量。一系列基准测试问题验证了所提出的多维方案的准确性,稳健性和效率。(c)2021 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号