首页> 外文OA文献 >Riemann Invariant Manifolds for the Multidimensional Euler Equations Part I: Theoretical Development Part II: A Multidimensional Godunov Scheme and Applications
【2h】

Riemann Invariant Manifolds for the Multidimensional Euler Equations Part I: Theoretical Development Part II: A Multidimensional Godunov Scheme and Applications

机译:多维欧拉方程的黎曼不变流形第一部分:理论发展第二部分:多维Godunov方案及其应用

摘要

A new approach for studying wave propagation phenomena in an inviscid gas is presented. This approach can be viewed as the extension of the method of characteristicsudto the general case of unsteady multidimensional flow. The general case of the unsteady compressible Euler equations in several space dimensions is examined. A family of spacetime manifolds is found on which an equivalent one-dimensional problem holds. Their geometry depends on the spatial gradients of the flow, and they provide, locally, a convenient system of coordinate surfaces for spacetime. In the case of zero entropy gradients, functions analogous to the Riemann invariantsudof 1-D gas dynamics can be introduced. These generalized Riemann Invariants are constant on these manifolds and, thus, the manifolds are dubbed Riemann InvariantudManifolds (RIM). In this special case of zero entropy gradients, the equations of motion are integrable on these manifolds, and the problem of computing theudsolution becomes that of determining the manifold geometry in spacetime. This situation is completely to the traditional method of characteristics in one-dimensional flow.ududExplicit espressions for the local differential geometry of these manifolds can be found directly from the equations of motion. The local direction and speed of propagationudof the waves that these manifolds represent, can be found as a function of the local spatial gradients of the flow. Their geometry is examined, and in particular,udtheir relation to the characteristic surfaces. It turns out that they can be space-likeudor time-like, depending on the flow gradients. Wave propagation can be viewed as a superposition of these Riemann Invariant waves, whenever appropriate conditionsudof smoothness are met. This provides a means for decomposing the equations into a set of convective scalar fields in a way which is different and potentially more useful than the characteristic decomposition. The two decompositions become identical in the special case of one-dimellsional flow. This different approach can be used for computational purposes by discretizing the equivalent set of scalar equations. Such a computational application of this theory leads to the possibility of determining theudsolution at points in spacetime using information that propagates faster than the local characteristic speed, i.e., using information outside the domain of dependence.udThis possibility and its relation to the uniqueness theorems is discussed.
机译:提出了一种研究不粘气体中波传播现象的新方法。这种方法可以看作是对非定常多维流一般情况的特征方法的扩展。研究了在几个空间维上的非定常可压缩Euler方程的一般情况。发现一族时空流形,其上存在一个等效的一维问题。它们的几何形状取决于流动的空间梯度,并且它们局部地为时空提供了方便的坐标曲面系统。在零熵梯度的情况下,可以引入类似于一维气体动力学的黎曼不变量 udf的函数。这些广义的黎曼不变量在这些流形上是恒定的,因此,这些流形称为“黎曼不变量 udManifolds(RIM)”。在零熵梯度的这种特殊情况下,运动方程在这些流形上是可积分的,计算解的问题变成了确定时空中流形的几何问题。这种情况完全符合传统的一维流特征方法。 ud ud这些歧管的局部微分几何的明确表达式可以直接从运动方程中找到。这些歧管所代表的波的局部方向和传播速度 ud可以根据流的局部空间梯度找到。检查它们的几何形状,尤其是它们与特征曲面的关系。事实证明,取决于流量梯度,它们可以像空间 udor时间一样。只要满足适当的条件 udof平滑度,就可以将波传播视为这些黎曼不变波的叠加。这提供了一种以与特征分解不同的方式并且可能比其有用的方式将方程式分解为对流标量场的方法。在一维流动的特殊情况下,两个分解变得相同。通过离散化等效的标量方程组,可以将这种不同的方法用于计算目的。这种理论的这种计算应用导致使用传播速度快于局部特征速度的信息(即使用依赖域之外的信息)确定时空点处的解的可能性。这种可能性及其与唯一性的关系定理讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号