首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay
【24h】

An integro quadratic spline-based scheme for solving nonlinear fractional stochastic differential equations with constant time delay

机译:基于积分二次样条的基于恒定时间延迟的非线性分数随机微分方程

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an accurate and computationally efficient technique for the approximate solution of a rich class of fractional stochastic differential equations with constant delay driven by Brownian motion. In this regard, a piecewise integro quadratic spline interpolation approach is adopted for approximating the fractional-order integral. The performance of the computational scheme is evaluated by statistical indicators of the exact solutions. Moreover, the computational convergence is also analysed. Three families of models with stochastic excitations illustrate the accuracy of the new approach as compared with the M-scheme. (C) 2020 Elsevier B.V. All rights reserved.
机译:本文提出了一种准确和计算的高效技术,用于棕色运动驱动的恒定延迟的富集类分数随机微分方程的近似解。在这方面,采用分段积分二次样条状插值方法,用于近似分数整数。通过精确解决方案的统计指标评估计算方案的性能。此外,还分析了计算会聚。与M-Scheme相比,三个具有随机激励的模型的三个模型的准确性。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号