首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Single image super-resolution via non-local normalized graph Laplacian regularization: A self-similarity tribute
【24h】

Single image super-resolution via non-local normalized graph Laplacian regularization: A self-similarity tribute

机译:单图像超分辨率通过非局部标准化图拉普拉斯正则化:自我相似性致敬

获取原文
获取原文并翻译 | 示例

摘要

The process of producing a high-resolution image given a single low-resolution noisy measurement is called single-frame image super-resolution (SISR). Historically, many fractal based schemes have been proposed in the literature to address the SISR problem. Many conventional interpolation schemes fail to preserve important edge information of natural images and cannot be used blindly for resolution enhancement. Generally, a-priori constraints are required in the process of high resolution image approximation. We model the SISR problem as an energy minimization procedure which balances data fidelity and a regularization term. The regularization term will implicitly incorporate natural image redundancy via a normalized graph Laplacian operator, as a self-similarity based prior. This operator applies a non-local kernel similarity measure due to the choice of a non-local operator for the weight assignment. The data fidelity term is modelled as a likelihood estimator that is scaled using a sharpening term composed from the normalized graph Laplacian operator. Finally, a conjugate gradient scheme is used to minimize the objective functional. Promising results on resolution enhancement for a variety of digital images will be presented. (C) 2020 Elsevier B.V. All rights reserved.
机译:给定单个低分辨率噪声测量的高分辨率图像的过程称为单帧图像超分辨率(SISR)。从历史上看,在文献中已经提出了许多基于分数的方案来解决SISR问题。许多传统的插值方案不能保留自然图像的重要边缘信息,并且不能盲目地用于分辨率增强。通常,在高分辨率图像近似过程中需要先验的约束。我们将SISR问题模拟为能量最小化程序,余额数据保真度和正则化术语。正则化术语将通过标准化的图形拉普拉斯算子隐式地结合自然图像冗余,作为基于自相似性的基于自我相似性。该操作员由于选择重量分配而选择非本地内核相似度量。数据保真术语被建模为使用由归一化图拉普拉斯级操作员组成的锐化术语来缩放的似然估计器。最后,使用共轭梯度方案来最小化目标函数。将提出关于各种数字图像的分辨率提高的有希望的结果。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号