首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system
【24h】

Hidden attractors, singularly degenerate heteroclinic orbits, multistability and physical realization of a new 6D hyperchaotic system

机译:隐藏的吸引子,奇异退化的杂循环轨道,多重性和新的6D超混沌系统的物理实现

获取原文
获取原文并翻译 | 示例

摘要

This paper reports a sequential design of linearly controlling a three-dimensional (3D) quadratic system to a simple six-dimensional hyperchaotic system with complex dynamics. By adding three linear dynamical controllers, the resulting 6D system has no equilibrium and a hidden attractor, which has four positive Lyapunov exponents (LEs). This paper focuses on the 6D system, to reveal its unusual dynamics such as infinitely many singularly degenerate heteroclinic cycles and bifurcations from such singular orbits to hidden hyperchaotic attractors. Detailed numerical investigations are carried out, including bifurcation diagram, LE spectrum and phase portrait. Furthermore, the system has multistability corresponding to three types of equilibria, including no equilibrium and infinite non-isolated equilibria. In particular, we find that at least seven different attractors coexist when the system has one equilibrium line. Finally, this 6D hyperchaotic system is verified by 0-1 test and a circuit. (c) 2020 Elsevier B.V. All rights reserved.
机译:本文报道了一种用复杂动态控制三维(3D)二次系统线性控制三维(3D)二次系统的顺序设计。通过添加三个线性动态控制器,所得到的6D系统没有平衡和隐藏的吸引子,其具有四个正的Lyapunov指数(LES)。本文重点介绍了6D系统,揭示其异常动态,如无限的许多奇异退化的杂循环和从这种奇异轨道到隐藏的超混沌吸引子的分叉。进行详细的数值研究,包括分叉图,LE频谱和相位肖像。此外,该系统具有对应于三种类型的均衡的多个,包括没有平衡和无限的非分离平衡。特别是,当系统有一个平衡线时,我们发现至少七种不同的吸引子共存。最后,通过0-1测试和电路验证了该6D超色度系统。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号