首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A novel method based on augmented Markov vector process for the time-variant extreme value distribution of stochastic dynamical systems enforced by Poisson white noise
【24h】

A novel method based on augmented Markov vector process for the time-variant extreme value distribution of stochastic dynamical systems enforced by Poisson white noise

机译:基于泊松白噪声的随机动力系统时变极值分布的基于增强马尔可夫矢量过程的新方法

获取原文
获取原文并翻译 | 示例

摘要

The probability density function (PDF) of the time-variant extreme value process for structural responses is of great importance. Poisson white noise excitation occurs widely in practical engineering problems. The extreme value distribution of the response of systems excited by Poisson white noise processes is still not yet readily available. For this purpose, in the present paper, a novel method based on the augmented Markov vector process for the PDF of the time-variant extreme value process for a Poisson white noise driven dynamical system is proposed. Specifically, the augmented Markov vector (AMV) process is constructed by combining the extreme value process and its underlying response process. Then the joint probability density of the AMV can be evaluated by solving the Chapman-Kolmogorov Equation, e.g., via the path integral solution (PIS). Further, the PDF of the time-variant extreme value process is obtained, and can be used, say, to estimate the dynamic reliability of a stochastic system. For the purpose of illustration and verification, several numerical examples are studied and compared with Monte Carlo solution. Problems to be further studied are also discussed. (c) 2019 Elsevier B.V. All rights reserved.
机译:结构响应的时变极值过程的概率密度函数(PDF)非常重要。泊松白噪声激发在实际工程问题中广泛发生。泊松白噪声过程激发的系统的响应的极值分布仍然不容易获得。为此,在本文中,提出了一种基于改进的马尔可夫矢量过程的泊松白噪声驱动动力系统时变极值过程PDF的新方法。具体来说,增强马尔可夫向量(AMV)过程是通过组合极值过程及其基础响应过程来构造的。然后可以通过例如通过路径积分解(PIS)求解Chapman-Kolmogorov方程来评估AMV的联合概率密度。此外,获得了时变极值过程的PDF,并且可以用于估计随机系统的动态可靠性。为了说明和验证,研究了几个数值示例并将其与蒙特卡洛解决方案进行了比较。还讨论了需要进一步研究的问题。 (c)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号