...
首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A novel homotopy-wavelet approach for solving stream function-vorticity formulation of Navier-Stokes equations
【24h】

A novel homotopy-wavelet approach for solving stream function-vorticity formulation of Navier-Stokes equations

机译:求解Navier-Stokes方程的流函数涡度公式的一种新的同伦小波方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a new homotopy-wavelet approach to solve linear and nonlinear problems with nonhomogeneous boundary conditions. The essence of this technique is to apply the homotopy analysis method (HAM) to transform the governing equations into a set of linear equations and employ the generalized Coiflet-type orthogonal wavelet to express and solve the resulting linear equations. The proposed technique is expected to keep the superiority of the HAM for handling nonlinearities, but with better computational efficiency. The nonhomogeneous boundary conditions including the mixed Dirichlet-Neumann and Robin conditions are reconstructed by introducing the Coiflets on the boundaries, which overcomes the deficiency of the close wavelet method that is difficult to handle the nonhomogeneous boundary conditions. Illustrative examples show very high efficiency of our proposed technique. Furthermore, the classic problem of the incompressible flow in a 2-D lid-driven cavity are investigated. By reconstructing the incompatible boundary conditions with the Coiflets, the singularities of velocity field on rigid points are successfully eliminated so that the vortex on the lid that is difficult to be obtained by previous approaches can be captured clearly. Comparison with previous results is made, excellent agreement is found. (C) 2018 Elsevier B.V. All rights reserved.
机译:在本文中,我们提出了一种新的同伦小波方法来解决边界条件不均匀的线性和非线性问题。该技术的本质是应用同伦分析方法(HAM)将控制方程式转换为一组线性方程式,并使用广义Coiflet型正交小波来表达和求解所得线性方程式。预期所提出的技术将保持HAM在处理非线性方面的优越性,但具有更好的计算效率。通过在边界上引入Coiflet重构包括Dirichlet-Neumann和Robin混合条件的非均匀边界条件,克服了难以处理非均匀边界条件的小波方法的不足。说明性示例显示了我们提出的技术的非常高的效率。此外,研究了二维盖驱动腔中不可压缩流动的经典问题。通过用Coiflet重构不相容的边界条件,成功消除了刚性点上速度场的奇异性,从而可以清晰地捕捉到盖子上由先前方法难以获得的涡旋。与以前的结果进行了比较,发现非常一致。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号