首页> 外文学位 >Reconstructed Discontinous Galerkin Method for the Compressible Navier-Stokes Equations in Arbitrary Langrangian and Eulerian Formulation
【24h】

Reconstructed Discontinous Galerkin Method for the Compressible Navier-Stokes Equations in Arbitrary Langrangian and Eulerian Formulation

机译:拉格朗日和欧拉公式中可压缩的Navier-Stokes方程的重构间断Galerkin方法

获取原文
获取原文并翻译 | 示例

摘要

The discontinuous Galerkin (DG) methods are widely used in computational fluid dynamics (CFD) as higher-order schemes. However, the computational costs and storage requirements are expensive for DG methods. In order to reduce the high computing costs, the reconstructed discontinuous Galerkin (rDG) method is highly preferable. Although the rDG method has been studied frequently in the Eulerian formulation, its applications are relatively rare in the arbitrary Lagrangian- Eulerian (ALE) and the Lagrangian formulations. The objective of the effort presented in this PhD work is to investigate the performance of a Taylor-basis rDG method in all the three formulations (-- Eulerian, ALE and Lagrangian) for compressible Euler/Navier-Stokes equations.;In the Eulerian formulation, the focus is on a non-linear solver, called the non-linear Krylov acceleration (NKA). The implicit schemes due to the less demanding constraint on the CFL number, are frequently used in the rDG methods. In general, implicit methods require the solution of a nonlinear system of equations at each time step or stage. Among those nonlinear solvers Newton- GMRES is a popular one, in which the linear equations resulting from the Newton linearization procedure are solved by the generalized minimal residual method (GMRES). In this work, the NKA solver is incorporated into the rDG scheme, and used to solver the nonlinear system arising from the rDG formulation. A comparison study is performed between NKA and Newton-GMRES in terms of the CPU time cost, over a variety of steady and unsteady test cases. The results demonstrate that the NKA solver is comparable to its Newton-GMRES counterpart for steady problems, and is observed to be 2 to 5 times faster than Newton-GMRES for transient flow problems. Thus NKA provides an attractive alternative to solve systems of nonlinear equations in the context of the rDG formulation.;Many engineering problems requires the solution on variable geometries, such as aeroelasticity, fluid-structure interaction, flapping flight and rotor-stator flows in turbine passage. The arbitrary Lagrangian-Eulerian (ALE) formulation is often considered for solving such problems. Based on the success of the rDG method in Eulerian formulation, its extension to the ALE scheme is desirable. Thus, a rDG-ALE method is proposed in this work, to simulate flows over domains with moving and deforming grids. One critical issue in ALE methods is how to satisfy the geometric conservation law (GCL). In this work, we follow the idea from the literature and update the grid velocity terms at Gauss quadrature points on the right-hand side (RHS) of the semi-discrete equations, to enforce the GCL condition. For a typical moving boundary problem, the motion of the domain boundaries are usually given. To avoid excessive distortion and invalid elements, the motion of the boundary nodes can be propagated to the interior of the mesh by a smoothing procedure. In this work, the radial basis function (RBF) interpolation method is used for the mesh smoothing. Several numerical examples are set up to assess the performance of the proposed rDG-ALE method.Mesh and timestep refinement study shows that the designed spatial and temporal orders of accuracy are achieved. The results from the moving airfoil problems are compared with the experimental or numerical data in the literature, showing the capability of the rDG-ALE method in solving such problems.;Lagrangian method is particularly suitable for the evolution of flows undergoing large deformation due to strong compresssion or expansion. Since the mesh will follow the flow features, the method is naturally adaptive. And in this method, there's no mass flux across the boundary between cells, thus permitting accurately tracking of material interface. There're generally two approaches in Lagrangian method for the placement of the physical variables, the staggered-grid approach and the cell-centered approach. In cell-centered approach, the variables have consistent locations. However, how to determine the vertex velocity and guarantee the consistency between the mesh motion and the numerical flux is a challenge. One solution to this difficulty is to use a nodal Riemann solver, which provides a unique nodal velocity, and also the flux in momentum and total energy equations.;The Lagrangian formulation can be written in either total Lagrangian form or updated Lagrangian form. The total Lagrangian is usually discretized on the fixed initial mesh, while the updated Lagrangian on the time-dependent physical domain. In this work, we propose a cellcentered updated Lagrangian formulation using the rDG method, and take the advantage of the nodal Riemann solver. This method is a Lagrangian limit of the unsplit rDG-ALE formulation, with the conservative variables as the working variables. To suppress the oscillations near discontinuities, the vertex-based (VB) limiter by Kuzmin is preferred. The limiter on characteristic variables turns out to outperformits counterpart on the conservative physical variables, in terms of the monotonicity and symmetry preservation. The designed spatial order of accuracy is also achieved by setting up the smooth flow problems.;Overall, the rDG method using Taylor-basis has shown promising results in all the three formulations, and has a great potential to become an attractive and competitive method. In addition, the performance of the combination of the NKA nonlinear solver with rDG method is also quite impressive.
机译:不连续Galerkin(DG)方法作为高阶方案广泛用于计算流体力学(CFD)。但是,对于DG方法而言,计算成本和存储要求昂贵。为了降低高计算成本,重构不连续伽勒金(rDG)方法是非常可取的。尽管rDG方法已在欧拉公式中进行了频繁研究,但在任意拉格朗日-欧拉(ALE)和拉格朗日公式中其应用相对较少。本博士研究工作的目的是研究在可压缩的Euler / Navier-Stokes方程的所有三种公式(-Eulerian,ALE和Lagrangian)中采用泰勒基础rDG方法的性能。 ,重点是非线性求解器,称为非线性Krylov加速度(NKA)。由于对CFL数量的要求较少,隐式方案经常在rDG方法中使用。通常,隐式方法需要在每个时间步长或每个阶段求解非线性方程组。在那些非线性求解器中,牛顿-GMRES是一种流行的方法,其中通过广义最小残差法(GMRES)求解牛顿线性化过程产生的线性方程。在这项工作中,将NKA求解器合并到rDG方案中,并用于求解由rDG公式引起的非线性系统。在各种稳定和不稳定的测试案例中,NKA和Newton-GMRES之间就CPU时间成本进行了比较研究。结果表明,对于稳态问题,NKA求解器与其牛顿-GMRES求解器相当,并且对于瞬态流动问题,其求解速度比牛顿-GMRES快2至5倍。因此NKA提供了一个有吸引力的替代方案,可以解决rDG公式中的非线性方程组。;许多工程问题需要解决各种几何形状的问题,例如气动弹性,流体-结构相互作用,扑翼飞行以及涡轮机通道中的定子流动。通常考虑使用任意的拉格朗日-欧拉(ALE)公式来解决此类问题。基于rDG方法在欧拉公式化中的成功应用,将其扩展到ALE方案是可取的。因此,在这项工作中提出了一种rDG-ALE方法,以模拟具有移动和变形网格的区域上的流动。 ALE方法中的一个关键问题是如何满足几何守恒定律(GCL)。在这项工作中,我们遵循文献的思想,并更新半离散方程右侧(RHS)上高斯正交点处的网格速度项,以强制执行GCL条件。对于典型的运动边界问题,通常给出域边界的运动。为了避免过度变形和无效元素,可以通过平滑过程将边界节点的运动传播到网格的内部。在这项工作中,径向基函数(RBF)插值方法用于网格平滑。建立了几个数值例子来评估所提出的rDG-ALE方法的性能。网格和时间步细化研究表明,达到了设计的空间和时间精度顺序。将运动翼型问题的结果与文献中的实验数据或数值数据进行了比较,显示了rDG-ALE方法解决此类问题的能力。拉格朗日方法特别适用于由于变形大而变形较大的流动压缩或膨胀。由于网格将遵循流动特征,因此该方法自然是自适应的。而且在这种方法中,在单元之间的边界上没有质量通量,因此可以精确跟踪材料界面。在拉格朗日方法中,物理变量的放置通常有两种方法,即交错网格方法和以单元为中心的方法。在以单元为中心的方法中,变量具有一致的位置。然而,如何确定顶点速度并保证网格运动和数值通量之间的一致性是一个挑战。解决此难题的一种方法是使用节点Riemann求解器,该求解器提供独特的节点速度,以及动量和总能量方程式的通量。拉格朗日公式可以用总拉格朗日形式或更新的拉格朗日形式来表示。总拉格朗日数通常在固定的初始网格上离散,而更新的拉格朗日数在时间相关的物理域上离散。在这项工作中,我们使用rDG方法提出了一个以细胞为中心的更新拉格朗日公式,并利用了节点黎曼求解器的优势。该方法是未分割rDG-ALE公式的Lagrangian极限,以保守变量为工作变量。抑制不连续点附近的振荡,最好使用Kuzmin的基于顶点(VB)的限制器。就单调性和对称性保存而言,特征变量的限制器优于保守的物理变量。总体而言,使用泰勒基的rDG方法在所有三种配方中均显示出令人鼓舞的结果,并且有很大的潜力成为有吸引力和具有竞争力的方法。此外,将NKA非线性求解器与rDG方法结合使用的性能也非常出色。

著录项

  • 作者

    Wang, Chuanji.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Aerospace engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号