首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Integrability conditions and solitonic solutions of the nonlinear Schroedinger equation with generalized dual-power nonlinearities, PT-symmetric potentials, and space- and time-dependent coefficients
【24h】

Integrability conditions and solitonic solutions of the nonlinear Schroedinger equation with generalized dual-power nonlinearities, PT-symmetric potentials, and space- and time-dependent coefficients

机译:具有广义双幂非线性,PT对称势以及时空相关系数的非线性Schroedinger方程的可积条件和孤子解

获取原文
获取原文并翻译 | 示例

摘要

We consider a generalized nonlinear Schrodinger equation with dual power law nonlinearities, complex potential, and position- and time-dependent strengths of dispersion and nonlinearities. Using a standard similarity transformation, we obtain the integrability conditions and solitonic solutions of this equation by mapping it to its homogeneous version. Using a modified similarity transformation, where a solution of the homogeneous equation, which we denote as a seed, enters also in the transformation operator, a wider range of exact solutions is obtained including cases with complex potentials. We apply these two transformations to obtain two exact solitonic solutions of the homogeneous nonlinear Schrodinger equation, which are derived here for the first time for a general power of the nonlinearities, namely the flat-top soliton and tanh solution. We discuss and derive explicit solutions to the experimentally relevant cases associated with parabolic and PT-symmetric potentials. (C) 2018 Published by Elsevier B.V.
机译:我们考虑具有双重幂律非线性,复势以及色散和非线性的位置和时间相关强度的广义非线性Schrodinger方程。使用标准的相似性变换,我们将该方程映射到其齐次形式,从而获得了该方程的可积性条件和孤子解。使用修改后的相似度变换,其中均方方程的解(我们称为种子)也输入到变换算符中,因此可以获得更广泛的精确解,包括具有复杂势的情况。我们应用这两种变换来获得齐次非线性Schrodinger方程的两个精确的孤子解,这是首次获得非线性的一般幂,即平顶孤子和tanh解。我们讨论并得出与抛物线和PT对称势相关的实验相关情况的显式解决方案。 (C)2018由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号