首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A high accurate hamiltonian nodal position finite element method for spatial cable structures undergoing long-term large overall motion
【24h】

A high accurate hamiltonian nodal position finite element method for spatial cable structures undergoing long-term large overall motion

机译:长期大范围运动的空间电缆结构的高精度哈密顿节点位置有限元方法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the challenges faced by the error accumulation over long-term numerical calculation for dynamic modeling of spatial flexible cable structures undergoing large translational and rotational motion. A high accurate Hamiltonian nodal position finite element method is proposed to deal with the challenges. The new nodal position finite element discrete formulation is derived by Hamiltonian theory and Green strain theory with full expression of global stiffness matrices without additional simplifications. Symplectic difference algorithm is built for numerical solution to optimally preserve the energy, momenta and area (volume) of the phase space. Forth-order closed Newton-Cotes numerical integration is applied to calculate the aerodynamic drag force. The Symplectic conservation feature of the proposed method is validated by the dynamics of a long-period classical pendulum. The numerical accuracy and stability of the proposed method are validated by LS-DYNA simulations for a flexible polyethylene rubber conical pendulum, the experiments of a three-dimensional circularly towed cable and the experiments of a free swing cable. The present algorithm is compared with the conventional second-order Runge-Kutta algorithm. All validations and comparisons indicate that the proposed method is stable and highly accurate. (C) 2018 Elsevier B.V. All rights reserved.
机译:本文解决了长期数值计算中误差累积所面临的挑战,这些误差是对承受大的平移和旋转运动的空间柔性电缆结构进行动态建模的。提出了一种高精度的哈密顿量节点位置有限元方法。新的节点位置有限元离散公式是由哈密顿理论和格林应变理论推导而来的,它完整表达了整体刚度矩阵,而没有进行其他简化。建立了数值计算的辛差分算法,以最佳地保留相空间的能量,动量和面积(体积)。应用四阶封闭牛顿-柯特数值积分计算空气阻力。所提方法的辛守恒特征已通过长周期经典摆的动力学验证。该方法的数值精度和稳定性通过LS-DYNA仿真对挠性聚乙烯橡胶锥形摆,三维圆拖缆实验和自由摆缆实验进行了验证。将本算法与常规二阶Runge-Kutta算法进行比较。所有验证和比较表明,所提出的方法是稳定且高度准确的。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号