首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique
【24h】

Uncertainty quantification for nonlinear difference equations with dependent random inputs via a stochastic Galerkin projection technique

机译:随机Galerkin投影技术对具有相关随机输入的非线性差分方程的不确定性量化

获取原文
获取原文并翻译 | 示例

摘要

Discrete stochastic systems model discrete response data on some phenomenon with inherent uncertainty. The main goal of uncertainty quantification is to derive the probabilistic features of the stochastic system. This paper deals with theoretical and computational aspects of uncertainty quantification for nonlinear difference equations with dependent random inputs. When the random inputs are independent random variables, a generalized Polynomial Chaos (gPC) approach has been usually used to computationally quantify the uncertainty of stochastic systems. In the gPC technique, the stochastic Galerkin projections are done onto linear spans of orthogonal polynomials from the Askey-Wiener scheme or from Gram-Schmidt orthonormalization procedures. In this regard, recent results have established the algebraic or exponential convergence of these Galerkin projections to the solution process. In this paper, as the random inputs of the difference equation may be dependent, we perform Galerkin projections directly onto linear spans of canonical polynomials. The main contribution of this paper is to study the spectral convergence of these Galerkin projections for the solution process of general random difference equations. Spectral convergence is important to derive the main statistics of the response process at a cheap computational expense. In this regard, the numerical experiments bring to light the theoretical discussion of the paper. (C) 2018 Elsevier B.V. All rights reserved.
机译:离散随机系统对具有固有不确定性的某种现象的离散响应数据进行建模。不确定性量化的主要目标是推导随机系统的概率特征。本文涉及具有相关随机输入的非线性差分方程的不确定性量化的理论和计算方面。当随机输入是独立随机变量时,通常使用广义多项式混沌(gPC)方法来计算量化随机系统的不确定性。在gPC技术中,随机的Galerkin投影是根据Askey-Wiener方案或Gram-Schmidt正交归一化程序在正交多项式的线性跨度上完成的。在这方面,最近的结果确定了这些Galerkin投影到求解过程的代数或指数收敛。在本文中,由于差分方程的随机输入可能是依赖的,因此我们直接对规范多项式的线性跨度执行Galerkin投影。本文的主要贡献是研究这些Galerkin投影的谱收敛性,以解决一般随机差分方程的求解过程。频谱收敛对于以低廉的计算费用得出响应过程的主要统计数据很重要。在这方面,数值实验使本文的理论讨论更为生动。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号