首页> 外文OA文献 >Nonlinear geometric optics based multiscale stochastic Galerkin methods for highly oscillatory transport equations with random inputs
【2h】

Nonlinear geometric optics based multiscale stochastic Galerkin methods for highly oscillatory transport equations with random inputs

机译:基于非线性几何光学的多尺度随机Galerkin方法,用于随机输入的高度振荡传输方程

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We develop generalized polynomial chaos (gPC) based stochastic Galerkin (SG)methods for a class of highly oscillatory transport equations that arise insemiclassical modeling of non-adiabatic quantum dynamics. These models containuncertainties, particularly in coefficients that correspond to the potentialsof the molecular system. We first focus on a highly oscillatory scalar modelwith random uncertainty. Our method is built upon the nonlinear geometricaloptics (NGO) based method, developed in cite{NGO} for numerical approximationsof deterministic equations, which can obtain accurate pointwise solution evenwithout numerically resolving spatially and temporally the oscillations. Withthe random uncertainty, we show that such a method has oscillatory higher orderderivatives in the random space, thus requires a frequency dependentdiscretization in the random space. We modify this method by introducing a new"time" variable based on the phase, which is shown to be non-oscillatory in therandom space, based on which we develop a gPC-SG method that can captureoscillations with the frequency-independent time step, mesh size as well as thedegree of polynomial chaos. A similar approach is then extended to asemiclassical surface hopping model system with a similar numerical conclusion.Various numerical examples attest that these methods indeed capture accuratelythe solution statistics {em pointwisely} even though none of the numericalparameters resolve the high frequencies of the solution.
机译:我们开发广义多项式混乱(GPC)基于随机辽金(SG)方法一类出现的非绝热量子动力学的造型insemiclassical高度振荡输运方程。这些模型containuncertainties,特别是在系数对应于potentialsof分子系统。我们首先专注于一个高度振荡标modelwith随机不确定性。我们的方法是在所述非线性geometricaloptics(NGO)的方法,在开发内置举{NGO}进行数值approximationsof确定性方程,其可以evenwithout获得精确的点态溶液数值解决空间和时间上的振荡。任意不等阶随机的不确定性,我们表明,这样的方法具有在随机空间振荡的高阶导,因此需要在随机空间频率dependentdiscretization。我们通过基于相,其被示出为无振荡在therandom空间,在此基础上,我们开发GPC-SG方法引入新的“时间”变量修改该方法,与频率无关的时间步骤可captureoscillations,筛目大小以及多项式混乱的thedegree。然后类似的方法也扩展到asemiclassical表面跳频模型系统具有相似的数值conclusion.Various数值例子证明,这些方法确实捕捉accuratelythe溶液统计{ EM pointwisely}即使没有numericalparameters的解决方案的高频率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号