首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Computation of the normal forms for general M-DOF systems using multiple time scales. Part Ⅰ: autonomous systems
【24h】

Computation of the normal forms for general M-DOF systems using multiple time scales. Part Ⅰ: autonomous systems

机译:使用多个时标来计算一般M-DOF系统的范式。第一部分:自治系统

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the symbolic computation of the normal forms of general multiple-degree-of-freedom oscillating systems. A perturbation technique based on the method of multiple time scales, without the application of center manifold theory, is generalized to develop efficient algorithms for systematically computing normal forms up to any high order. The equivalence between the perturbation technique and Poincare normal form theory is proved, and general solution forms are established for solving ordered perturbation equations. A number of cases are considered, including the non-resonance, general resonance, resonant case containing 1:1 primary resonance, and combination of resonance with non-resonance. "Automatic" Maple programs have been developed which can be executed by a user without knowing computer algebra and Maple. Examples are presented to show the efficiency of the perturbation technique and the convenience of symbolic computation. This paper is focused on autonomous systems, and non-autonomous systems are considered in a companion paper.
机译:本文涉及一般多自由度振荡系统的正规形式的符号计算。在不使用中心流形理论的情况下,基于多时标方法的摄动技术被普遍采用,以开发有效的算法,以系统地计算任何高阶范式。证明了摄动技术与Poincare范式理论的等价性,并建立了求解有序摄动方程的一般解形式。考虑了许多情况,包括非共振,一般共振,包含1:1主共振的共振情况以及共振与非共振的组合。已经开发了“自动” Maple程序,其可以由用户执行而无需知道计算机代数和Maple。给出的例子表明了摄动技术的效率和符号计算的便利性。本文着重于自治系统,在同篇论文中考虑了非自治系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号