首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Applications of information theory, genetic algorithms, and neural models to predict oil flow
【24h】

Applications of information theory, genetic algorithms, and neural models to predict oil flow

机译:信息论,遗传算法和神经模型在油流量预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

This work introduces a new information-theoretic methodology for choosing variables and their time lags in a prediction setting, particularly when neural networks are used in non-linear modeling. The first contribution of this work is the Cross Entropy Function (XEF) proposed to select input variables and their lags in order to compose the input vector of black-box prediction models. The proposed XEF method is more appropriate than the usually applied Cross Correlation Function (XCF) when the relationship among the input and output signals comes from a non-linear dynamic system. The second contribution is a method that minimizes the Joint Conditional Entropy (JCE) between the input and output variables by means of a Genetic Algorithm (GA). The aim is to take into account the dependence among the input variables when selecting the most appropriate set of inputs for a prediction problem. In short, theses methods can be used to assist the selection of input training data that have the necessary information to predict the target data. The proposed methods are applied to a petroleum engineering problem; predicting oil production. Experimental results obtained with a real-world dataset are presented demonstrating the feasibility and effectiveness of the method.
机译:这项工作介绍了一种新的信息理论方法,用于在预测设置中选择变量及其时滞,尤其是在非线性建模中使用神经网络时。这项工作的第一个贡献是提出了交叉熵函数(XEF),以选择输入变量及其滞后时间来构成黑盒预测模型的输入向量。当输入和输出信号之间的关系来自非线性动态系统时,提出的XEF方法比通常应用的互相关函数(XCF)更合适。第二个贡献是一种通过遗传算法(GA)最小化输入和输出变量之间的联合条件熵(JCE)的方法。目的是在为预测问题选择最合适的输入集时考虑输入变量之间的依赖性。简而言之,这些方法可用于协助选择具有必要信息以预测目标数据的输入训练数据。所提出的方法适用于石油工程问题。预测石油产量。给出了通过真实数据集获得的实验结果,证明了该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号