首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems
【24h】

Based on interval type-2 fuzzy-neural network direct adaptive sliding mode control for SISO nonlinear systems

机译:基于区间2型模糊神经网络的SISO非线性系统直接自适应滑模控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel direct adaptive interval type-2 fuzzy-neural tracking control equipped with sliding mode and Lyapunov synthesis approach is proposed to handle the training data corrupted by noise or rule uncertainties for nonlinear SISO nonlinear systems involving external disturbances. By employing adaptive fuzzy-neural control theory, the update laws will be derived for approximating the uncertain nonlinear dynamical system. In the meantime, the sliding mode control method and the Lyapunov stability criterion are incorporated into the adaptive fuzzy-neural control scheme such that the derived controller is robust with respect to unmodeled dynamics, external disturbance and approximation errors. In comparison with conventional methods, the advocated approach not only guarantees closed-loop stability but also the output tracking error of the overall system will converge to zero asymptotically without prior knowledge on the upper bound of the lumped uncertainty. Furthermore, chattering effect of the control input will be substantially reduced by the proposed technique. To illustrate the performance of the proposed method, finally simulation example will be given.
机译:本文提出了一种新颖的具有滑模和Lyapunov综合方法的直接自适应区间2型模糊神经跟踪控制,用于处理受外部干扰的非线性SISO非线性系统的噪声或规则不确定性破坏的训练数据。通过采用自适应模糊神经控制理论,将推导更新定律以逼近不确定的非线性动力系统。同时,将滑模控制方法和Lyapunov稳定性准则结合到自适应模糊神经控制方案中,从而使派生的控制器对于未建模的动力学,外部干扰和近似误差具有鲁棒性。与传统方法相比,所提倡的方法不仅可以保证闭环稳定性,而且整个系统的输出跟踪误差将渐近收敛到零,而无需事先了解集总不确定性的上限。此外,通过所提出的技术将大大降低控制输入的颤动效果。为了说明所提方法的性能,最后给出了仿真实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号