首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Some exact blowup solutions to the pressureless Euler equations in R~N
【24h】

Some exact blowup solutions to the pressureless Euler equations in R~N

机译:R〜N中无压力Euler方程的一些精确爆破解

获取原文
获取原文并翻译 | 示例

摘要

The pressureless Euler equations can be used as simple models of cosmology or plasma physics. In this paper, we construct the exact solutions in non-radial symmetry to the pressureless Euler equations in R~N: {ρ(t,x)=(f(1/(a(t)~5)∑_(i-1)~Nx_i~5))/(a(t)~N), u(t,x)-(a(t))/(a(t))x, a(t)=a_1+a_2t. where an arbitrary function f ≥ 0 and f ∈ C~1; s ≥ 1, a_1 > 0 and a_2 are constants. This new structure of the solutions fully covers the previous well-known one in radial symmetry: ρ(t,r)=(f(r/a(t)))/(a(t)~N),v(t,r)=(a(t))/(a(t))r. In particular, for a_2 < 0, the similar solutions blow up in the finite time T= a_1/a_2. Moreover, the functions (1) are also the solutions to the pressureless Navier-Stokes equations. Our exact solutions could provide the data for testing numerical methods. Alternatively, the exact solutions can be used as a primary estimation of the solutions for the Euler-Poisson equations if some initial conditions are satisfied.
机译:无压力的欧拉方程可以用作宇宙学或等离子体物理学的简单模型。在本文中,我们为R〜N中的无压力Euler方程构造了非径向对称的精确解:{ρ(t,x)=(f(1 /(a(t)〜5)∑_(i- 1)〜Nx_i〜5))/(a(t)〜N),u(t,x)-(a(t))/(a(t))x,a(t)= a_1 + a_2t。其中任意函数f≥0且f∈C〜1; s≥1,a_1> 0和a_2是常数。解决方案的这种新结构完全覆盖了以前众所周知的径向对称结构:ρ(t,r)=(f(r / a(t)))/(a(t)〜N),v(t, r)=(a(t))/(a(t))r。特别地,对于a_2 <0,相似的解在有限的时间T = a_1 / a_2中爆发。此外,函数(1)也是无压Navier-Stokes方程的解。我们的精确解决方案可以为测试数值方法提供数据。或者,如果满足一些初始条件,则精确解可以用作Euler-Poisson方程解的主要估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号