首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Painleve property, Lax pair and Darboux transformation of the variable-coefficient modified Kortweg-de Vries model in fluid-filled elastic tubes
【24h】

Painleve property, Lax pair and Darboux transformation of the variable-coefficient modified Kortweg-de Vries model in fluid-filled elastic tubes

机译:充液弹性管中变系数修正Korteweg-de Vries模型的Painleve性质,Lax对和Darboux变换

获取原文
获取原文并翻译 | 示例

摘要

With the consideration on the artery as a thin walled prestressed elastic tube with variable radius, a variable-coefficient modified Kortweg-de Vries (vc-mKdV) equation is obtained by the long wave approximation for the blood which is assumed as the incompressible non-viscous fluid. In the present paper, we firstly investigate the Painleve property of the vc-mKdV equation. Furthermore, with the Ablowitz-Kaup-Newell-Segur procedure and symbolic computation, the Lax pair of the vc-mKdV equation is constructed, by virtue of which we construct the Darboux transformation and a new soliton solution. Finally, the features of the new solution are discussed to illustrate the influences of the constant and variable coefficients in the solitonic propagation.
机译:考虑到动脉是具有可变半径的薄壁预应力弹性管,通过对血液的长波逼近获得了变系数修正的Kortweg-de Vries(vc-mKdV)方程,该方程被假定为不可压缩的非压缩血液。粘性液体。在本文中,我们首先研究vc-mKdV方程的Painleve性质。此外,通过Ablowitz-Kaup-Newell-Segur过程和符号计算,构造了vc-mKdV方程的Lax对,从而构造了Darboux变换和新的孤子解。最后,讨论了新解的特征,以说明常数系数和可变系数对孤子传播的影响。

著录项

  • 来源
  • 作者单位

    State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

    State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191, China Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

    Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

    Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

    School of Science, P.O. Box 122, Beijing University of Posts and Telecommunications, Beijing 100876, China;

    Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

    Ministry-of-Education Key Laboratory of Fluid Mechanics and National Laboratory for Computational Fluid Dynamics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    variable-coefficient modified kortweg-de; vries equation; painleve property; lax pair; darboux transformation; soliton solutions; elastic tube; symbolic computation;

    机译:变系数修正的kortweg-de;方程痛苦的财产松弛darboux转换孤子解;弹性管符号计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号