首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump
【24h】

Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump

机译:具有泊松跳跃的随机微分时滞方程解的泰勒逼近

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are concerned with the stochastic differential delay equations with Poisson jump (SDDEsPJ). As stochastic differential equations, most SDDEsPJ cannot be solved explicitly. Therefore, numerical solutions have become an important issue in the study of SDDEsPJ. The key contribution of this paper is to investigate the strong conver-gence between the true solutions and the numerical solutions to SDDEsPJ when the drift and diffusion coefficients are Taylor approximations.
机译:在本文中,我们关注具有泊松跳跃的随机微分时滞方程(SDDEsPJ)。作为随机微分方程,大多数SDDEsPJ不能明确求解。因此,数值解已成为SDDEsPJ研究的重要课题。本文的主要贡献是研究当漂移系数和扩散系数为泰勒近似值时,SDDEsPJ的真解与数值解之间的强收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号