首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Comment on: 'Some exact solutions of KdV equation with variable coefficients' [Commun Nonlinear Sci Numer Simul 2011; 16:1783-86]
【24h】

Comment on: 'Some exact solutions of KdV equation with variable coefficients' [Commun Nonlinear Sci Numer Simul 2011; 16:1783-86]

机译:评论:“变系数KdV方程的一些精确解” [Commun Nonlinear Sci Numer Simul 2011; 16:1783-86]

获取原文
获取原文并翻译 | 示例

摘要

It is shown that in the commented paper the exact solutions were found only for those variable-coefficient KdV equations which are reduced to the classical (constant-coefficient) KdV equation by point transformations, and these solutions are preimages of well-known traveling wave solutions of the KdV equation with respect to the corresponding point transformations. The equivalence-based approach suggested in [Popovych RO, Vaneeva 00. More common errors in finding exact solutions of nonlinear differential equations: Part 1. Commun Nonlinear Sci Numer Simul 2010; 15:3887-99] allows one to obtain more results. This disproves the relevance of the extended mapping transformation method for the class of equations under consideration.
机译:结果表明,在经评论的论文中,仅找到了那些通过点变换简化为经典(常数系数)KdV方程的变系数KdV方程的精确解,并且这些解是众所周知的行波解的原像。关于相应点变换的KdV方程在[Popovych RO,Vaneeva 00中提出了基于等价的方法。寻找非线性微分方程精确解的更多常见错误:第1部分。CommunNonlinear Sci Numer Simul 2010; 15:3887-99]允许人们获得更多结果。这证明了扩展映射变换方法对于所考虑的方程类别的相关性。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号