首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement
【24h】

A conformal mapping based fractional order approach for sub-optimal tuning of PID controllers with guaranteed dominant pole placement

机译:基于保形映射的分数阶方法,用于PID控制器的次优调节,保证了主导极点的位置

获取原文
获取原文并翻译 | 示例

摘要

A novel conformal mapping based fractional order (FO) methodology is developed in this paper for tuning existing classical (Integer Order) Proportional Integral Derivative (PID) controllers especially for sluggish and oscillatory second order systems. The conventional pole placement tuning via Linear Quadratic Regulator (LQR) method is extended for open loop oscillatory systems as well. The locations of the open loop zeros of a fractional order PID (FOPID or PI~λD~μ) controller have been approximated in this paper vis-a-vis a LQR tuned conventional integer order PiD controller, to achieve equivalent integer order PID control system. This approach eases the implementation of analog/digital realization of a FOPID controller with its integer order counterpart along with the advantages of fractional order controller preserved. It is shown here in the paper that decrease in the integro-differential operators of the FOPID/PI~λD~μ controller pushes the open loop zeros of the equivalent PID controller towards greater damping regions which gives a trajectory of the controller zeros and dominant closed loop poles. This trajectory is termed as "M-curve". This phenomena is used to design a two-stage tuning algorithm which reduces the existing PID controller's effort in a significant manner compared to that with a single stage LQR based pole placement method at a desired closed loop damping and frequency.
机译:本文开发了一种新颖的基于共形映射的分数阶(FO)方法,用于调整现有的经典(整数阶)比例积分微分(PID)控制器,特别是对于速度慢和振荡的二阶系统。通过线性二次调节器(LQR)方法进行的常规极点布置调整也扩展到开环振荡系统。相对于LQR调谐的常规整数阶PiD控制器,本文已对分数阶PID(FOPID或PI〜λD〜μ)控制器的开环零点的位置进行了近似估算,以实现等效的整数阶PID控制系统。这种方法简化了FOPID控制器的模拟/数字实现及其整数阶对应项,并保留了分数阶控制器的优点。如本文所示,FOPID / PI〜λD〜μ控制器的积分微分运算符的减小将等效PID控制器的开环零点推向更大的阻尼区域,从而给出了控制器零点和主导闭合点的轨迹环极。该轨迹被称为“ M曲线”。该现象用于设计两阶段调整算法,与在期望的闭环阻尼和频率下使用单阶段基于LQR的极点放置方法相比,该方法显着减少了现有PID控制器的工作量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号