首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Dynamical level set method for parameter identification of nonlinear parabolic distributed parameter systems
【24h】

Dynamical level set method for parameter identification of nonlinear parabolic distributed parameter systems

机译:非线性抛物线分布参数系统参数辨识的动态水平集方法

获取原文
获取原文并翻译 | 示例

摘要

This article considers a dynamical level set method for the identification problem of the nonlinear parabolic distributed parameter system, which is based on the solvability and stability of the direct PDE (partial differential equation) in Sobolev space. The dynamical level set algorithms have been developed for ill-posed problems in Hilbert space. This method can be regarded as a asymptotical regularization method as long as a certain stopping rule is satisfied. Hence, the convergence analysis of the method is established similar to the proof of convergence of asymptotical regularization. The level set converges to a solution as the artificial time evolves to infinity. Furthermore, the proposed level set method is proved to be stable by using Lyapunov stability theorem, which is constructed in my previous article. Numerical tests are discussed to demonstrate the efficacy of the dynamical level set method, which consequently confirm the level set method to be a powerful tool for the identification of the parameter.
机译:本文考虑了非线性抛物线分布参数系统辨识问题的动力学水平集方法,该方法基于Sobolev空间中直接PDE(偏微分方程)的可解性和稳定性。已经针对希尔伯特空间中的不适定问题开发了动态水平集算法。只要满足特定的停止规则,该方法就可以被视为渐近正则化方法。因此,建立该方法的收敛性分析类似于渐近正则化的收敛性证明。随着人工时间发展到无穷大,水平集收敛到一个解。此外,通过使用我的前一篇文章中构造的Lyapunov稳定性定理,证明了所提出的水平集方法是稳定的。讨论了数值测试,以证明动态水平集方法的有效性,因此确定了水平集方法是用于参数识别的强大工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号