首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >State estimation of neural networks with both time-varying delays and norm-bounded parameter uncertainties via a delay decomposition approach
【24h】

State estimation of neural networks with both time-varying delays and norm-bounded parameter uncertainties via a delay decomposition approach

机译:具有时变延迟和范数有界参数不确定性的神经网络的状态估计通过延迟分解方法

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the state estimation problem for neural networks with both time-varying delays and norm-bounded parameter uncertainties. By employing a delay decomposition approach and a convex combination technique, we obtain less conservative delay-dependent stability criteria to guarantee the existence of desired state estimator for the delayed neural networks. Finally, numerical examples are presented to demonstrate the effectiveness of the proposed approach.
机译:本文关注具有时变时滞和范数有界参数不确定性的神经网络的状态估计问题。通过采用延迟分解方法和凸组合技术,我们获得了较少保守的依赖于延迟的稳定性标准,以保证存在延迟神经网络所需的状态估计量。最后,通过数值例子说明了所提方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号