首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects
【24h】

Stability and dynamical features of solitary wave solutions for a hydrodynamic-type system taking into account nonlocal effects

机译:考虑非局部影响的流体动力系统孤波解的稳定性和动力学特征

获取原文
获取原文并翻译 | 示例

摘要

We consider a hydrodynamic-type system of balance equations for mass and momentum closed by the dynamical equation of state taking into account the effects of spatial nonlocality. We study higher symmetry admitted by this system and establish its non-integrability for the generic values of parameters. A system of ODEs obtained from the system under study through the group theory reduction is investigated. The reduced system is shown to possess a family of the homoclinic solutions describing solitary waves of compression and rarefaction. The waves of compression are shown to be unstable. On the contrary, the waves of rarefaction are likely to be stable. Numerical simulations reveal some peculiarities of solitary waves of rarefaction, and, in particular, the recovery of their shape after the collisions.
机译:我们考虑到了质量和动量的平衡状态的流体力学类型的系统,该状态方程由状态动态方程考虑了空间非局部性的影响。我们研究了该系统承认的更高对称性,并建立了其对于参数通用值的不可积分性。研究了通过群论约简从研究中的系统获得的ODEs系统。简化后的系统显示出拥有一系列描述压缩和稀疏的孤立波的同宿解决方案。压缩波显示为不稳定。相反,稀疏浪很可能是稳定的。数值模拟揭示了稀疏孤波的一些特殊性,特别是碰撞后其形状的恢复。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号