首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity
【24h】

Geometrically nonlinear vibrations of beams supported by a nonlinear elastic foundation with variable discontinuity

机译:可变不连续性的非线性弹性地基所支撑梁的几何非线性振动

获取原文
获取原文并翻译 | 示例

摘要

Geometrically nonlinear vibrations of a Timoshenko beam resting on a nonlinear Winkler and Pasternak elastic foundation with variable discontinuity are investigated in this paper. A p-version finite element method is developed for geometric nonlinear vibrations of a shear deformable beam resting on a nonlinear foundation with discontinuity. The elastic foundation has cubic nonlinearity with the shearing layer. In the study the p-element which comes from the use of explored special displacement shape functions for damaged beams is used and applied to a model with nonlinear foundation. The novelty of the present study lies in the easy generalisation of the approach of natural frequencies, general mode shapes (transverse and rotations of cross sections), and maximal deflections in nonlinear steady state vibrations of the shear deformable beam for any size and location of discontinuity of the nonlinear elastic support. A new set of nonlinear partial differential equations is developed, and they are solved in the time domain using the Newmark method for obtaining the amplitudes and deformed shapes of a beam in the steady state forced vibration regime. The present work consists of the comparison of the results with various stiffnesses of nonlinear elastic supports of the Winkler and Pasternak type. (C) 2015 Elsevier B.V. All rights reserved.
机译:本文研究了具有可变间断的非线性Winkler和Pasternak弹性地基上的Timoshenko梁的几何非线性振动。针对在不连续的非线性地基上的剪力变形梁的几何非线性振动,开发了一种P型有限元方法。弹性地基的剪切层具有立方非线性。在研究中,使用了通过使用已探索的特殊位移形状函数处理受损梁的p元素,并将其应用于具有非线性基础的模型。本研究的新颖之处在于,对于任意大小和位置的不连续性,固有频率,一般模式形状(横截面的横向和旋转)以及剪切可变形梁的非线性稳态振动的最大挠度的简便归纳非线性弹性支撑。建立了一组新的非线性偏微分方程组,并使用Newmark方法在时域中求解它们,以获取稳态强迫振动状态下梁的振幅和变形形状。目前的工作包括将结果与Winkler和Pasternak型非线性弹性支撑的各种刚度进行比较。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号