首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Reprint of Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems
【24h】

Reprint of Analysis of Hamiltonian Boundary Value Methods (HBVMs): A class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems

机译:哈密​​顿边界值方法(HBVM)分析的重印:一类用于多项式哈密顿系统数值解的节能Runge-Kutta方法

获取原文
获取原文并翻译 | 示例

摘要

One main issue, when numerically integrating autonomous Hamiltonian systems, is the long-term conservation of some of its invariants; among them the Hamiltonian function itself. For example, it is well known that classical symplectic methods can only exactly preserve, at most, quadratic Hamiltonians. In this paper, we report the theoretical foundations which have led to the definition of the new family of methods, called Hamiltonian Boundary Value Methods (HBVMs). HBVMs are able to exactly preserve, in the discrete solution, Hamiltonian functions of polynomial type of arbitrarily high degree. These methods turn out to be symmetric and can have arbitrarily high order. A few numerical tests confirm the theoretical results. (C) 2014 Elsevier B.V. All rights reserved.
机译:在数值上整合自治汉密尔顿系统时,一个主要问题是其某些不变量的长期守恒。其中哈密顿函数本身。例如,众所周知,经典的辛方法最多只能精确地保留二次哈密顿量。在本文中,我们报告了导致新方法系列(称为汉密尔顿边界值方法(HBVM))定义的理论基础。 HBVM能够在离散解决方案中精确保留任意高次多项式类型的哈密顿函数。这些方法证明是对称的,可以具有任意高阶。一些数值测试证实了理论结果。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号